Optimization and performance study of large-scale biological networks for reconfigurable computing

M. Bhuiyan, Ananth Nallamuthu, M. C. Smith, V. Pallipuram
{"title":"Optimization and performance study of large-scale biological networks for reconfigurable computing","authors":"M. Bhuiyan, Ananth Nallamuthu, M. C. Smith, V. Pallipuram","doi":"10.1109/HPRCTA.2010.5670796","DOIUrl":null,"url":null,"abstract":"Field-programmable gate arrays (FPGAs) can provide an efficient programmable resource for implementing hardware-based spiking neural networks (SNN). In this paper we present a hardware-software design that makes it possible to simulate large-scale (2 million neurons) biologically plausible SNNs on an FPGA-based system. We have chosen three SNN models from the various models available in the literature, the Hodgkin-Huxley (HH), Wilson and Izhikevich models, for implementation on the SRC 7 H MAP FPGA-based system. The models have various computation and communication requirements making them good candidates for a performance and optimization study of SNNs on an FPGA-based system. Significant acceleration of the SNN models using the FPGA is achieved: 38x for the HH model. This paper also provides insights into the factors affecting the speedup achieved such as FLOP:Byte ratio of the application, the problem size, and the optimization techniques available.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"77 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/HPRCTA.2010.5670796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Field-programmable gate arrays (FPGAs) can provide an efficient programmable resource for implementing hardware-based spiking neural networks (SNN). In this paper we present a hardware-software design that makes it possible to simulate large-scale (2 million neurons) biologically plausible SNNs on an FPGA-based system. We have chosen three SNN models from the various models available in the literature, the Hodgkin-Huxley (HH), Wilson and Izhikevich models, for implementation on the SRC 7 H MAP FPGA-based system. The models have various computation and communication requirements making them good candidates for a performance and optimization study of SNNs on an FPGA-based system. Significant acceleration of the SNN models using the FPGA is achieved: 38x for the HH model. This paper also provides insights into the factors affecting the speedup achieved such as FLOP:Byte ratio of the application, the problem size, and the optimization techniques available.
面向可重构计算的大规模生物网络优化与性能研究
现场可编程门阵列(fpga)为实现基于硬件的峰值神经网络(SNN)提供了一种高效的可编程资源。在本文中,我们提出了一种硬件软件设计,可以在基于fpga的系统上模拟大规模(200万个神经元)生物学上合理的snn。我们从文献中可用的各种模型中选择了三种SNN模型,即Hodgkin-Huxley (HH), Wilson和Izhikevich模型,用于在基于SRC 7h MAP fpga的系统上实现。这些模型具有不同的计算和通信要求,使它们成为基于fpga的系统上snn性能和优化研究的良好候选者。使用FPGA实现SNN模型的显著加速:HH模型的加速为38倍。本文还提供了影响实现加速的因素的见解,例如应用程序的FLOP:字节比、问题大小和可用的优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1121
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信