Performance of Improvement of AlGaN‐Based Deep UV Light‐Emitting Diode with Two Parts Linearly Graded Barriers

P. Ren, Hao-Xiang Lin, Li-E. Cai, Chao-Zhi Xu, Zhi-Chao Chen, Hongyi Lin, F. Xiong, Jinman Huang, Linlin Cai
{"title":"Performance of Improvement of AlGaN‐Based Deep UV Light‐Emitting Diode with Two Parts Linearly Graded Barriers","authors":"P. Ren, Hao-Xiang Lin, Li-E. Cai, Chao-Zhi Xu, Zhi-Chao Chen, Hongyi Lin, F. Xiong, Jinman Huang, Linlin Cai","doi":"10.1002/pssa.202300276","DOIUrl":null,"url":null,"abstract":"Herein, a novel AlGaN‐based multiple quantum well (MQW) deep UV light‐emitting diode (DUV‐LED) structure with two parts linearly graded barriers is presented. The simulation result shows that at a current of 50 mA, the light output power of the DUV‐LED with two parts linearly graded barrier MQWs has significant improvement as compared to stationary barriers. The electroluminescence spectrum and radiative recombination rate of novel DUV‐LEDs are also larger more than twice that of the conventional QW structure. The reason is that the injection efficiency of holes is increased which helps improve the hole and electron concentration in the active area. Meanwhile, the electric field is also decreased by using two parts linearly graded quantum barriers, and according to reduce the electric field the quantum‐confined Stark effect and the bend of the energy band get relieved.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a novel AlGaN‐based multiple quantum well (MQW) deep UV light‐emitting diode (DUV‐LED) structure with two parts linearly graded barriers is presented. The simulation result shows that at a current of 50 mA, the light output power of the DUV‐LED with two parts linearly graded barrier MQWs has significant improvement as compared to stationary barriers. The electroluminescence spectrum and radiative recombination rate of novel DUV‐LEDs are also larger more than twice that of the conventional QW structure. The reason is that the injection efficiency of holes is increased which helps improve the hole and electron concentration in the active area. Meanwhile, the electric field is also decreased by using two parts linearly graded quantum barriers, and according to reduce the electric field the quantum‐confined Stark effect and the bend of the energy band get relieved.
两部分线性梯度势垒对AlGaN基深紫外发光二极管性能的改进
本文提出了一种新型的AlGaN - based多量子阱(MQW)深紫外发光二极管(DUV - LED)结构,该结构具有两部分线性梯度势垒。仿真结果表明,在50 mA电流下,具有两部分线性梯度势垒mqw的DUV‐LED的光输出功率比固定势垒有显著提高。新型DUV‐led的电致发光光谱和辐射复合率也比传统QW结构大两倍以上。其原因是空穴的注入效率提高,有利于提高活性区的空穴和电子浓度。同时,利用两部分线性梯度的量子势垒减小了电场,从而减轻了量子受限斯塔克效应和能带弯曲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信