T. Ishihara, Jun Shiomi, Naoki Hattori, Yutaka Masuda, A. Shinya, M. Notomi
{"title":"An Optical Neural Network Architecture based on Highly Parallelized WDM-Multiplier-Accumulator","authors":"T. Ishihara, Jun Shiomi, Naoki Hattori, Yutaka Masuda, A. Shinya, M. Notomi","doi":"10.1109/PHOTONICS49561.2019.00008","DOIUrl":null,"url":null,"abstract":"Future applications such as anomaly detection in a network and autonomous driving require extremely low, submicrosecond latency processing in pattern classification. Towards the realization of such an ultra-fast inference processing, this paper proposes an optical neural network architecture which can classify anomaly patterns at sub-nanosecond latency. The architecture fully exploits optical parallelism of lights using wavelength division multiplexing (WDM) in vector-matrix multiplication. It also exploits a linear optics with passive nanophotonic devices such as microring resonators, optical combiners, and passive couplers, which make it possible to construct low power and ultra-low latency optical neural networks. Optoelectronic circuit simulation using optical circuit implementation of multi-layer perceptron (MLP) demonstrates sub-nanosecond processing of optical neural network.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"73 1","pages":"15-21"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/PHOTONICS49561.2019.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Future applications such as anomaly detection in a network and autonomous driving require extremely low, submicrosecond latency processing in pattern classification. Towards the realization of such an ultra-fast inference processing, this paper proposes an optical neural network architecture which can classify anomaly patterns at sub-nanosecond latency. The architecture fully exploits optical parallelism of lights using wavelength division multiplexing (WDM) in vector-matrix multiplication. It also exploits a linear optics with passive nanophotonic devices such as microring resonators, optical combiners, and passive couplers, which make it possible to construct low power and ultra-low latency optical neural networks. Optoelectronic circuit simulation using optical circuit implementation of multi-layer perceptron (MLP) demonstrates sub-nanosecond processing of optical neural network.