Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning

Alvin Eka Putra, M. F. Naufal, Vincentius Riandaru Prasetyo
{"title":"Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning","authors":"Alvin Eka Putra, M. F. Naufal, Vincentius Riandaru Prasetyo","doi":"10.26418/jp.v9i1.58186","DOIUrl":null,"url":null,"abstract":"Rempah merupakan salah satu kekayaan yang dimiliki oleh Indonesia. Berdasarkan data yang dimiliki Negari Rempah Foundation, terdapat sekitar 400 hingga 500 spesies rempah di dunia dan 275 jenis rempah terdapat di Asia Tenggara terutama di Indonesia. Jenis rempah beragam dan memiliki kemiripan satu dengan yang lain sehingga sulit untuk dibedakan. Maka dari itu untuk mempertahankan pengetahuan mengenai rempah-rempah yang dimiliki Indonesia, diperlukan aplikasi klasifikasi jenis rempah yang akurat sehingga pengetahuan masyarakat tentang rempah tetap terjaga. Selain itu di bidang industri dapat meningkatkan efisiensi dalam industri rempah. Penggunaan teknologi dalam klasifikasi jenis rempah dapat meningkatkan efisiensi dalam industri rempah. Dengan teknologi yang tepat, waktu yang dibutuhkan untuk mengidentifikasi jenis rempah dapat dipercepat, dan juga meminimalkan risiko kesalahan manusia. Keterbatasan citra rempah juga menjadi permasalahan pada klasifikasi jenis rempah. Convolutional Neural Network (CNN) dengan arsitektur transfer learning adalah metode klasifikasi citra yang memiliki performa yang baik pada dataset dengan jumlah yang terbatas. Eksperimen yang dilakukan menggunakan 6 arsitketur CNN, yaitu Xception, MobileNetV2, DenseNet201, VGG16, VGG19, dan ResNet50. Terdapat 10 jenis rempah yang diklasifikasikan yaitu jahe, kunyit, kunci, adas, merica, laos, jintan, kencur, temulawak, dan ketumbar. Berdasarkan hasil eksperimen yang dilakukan Xception adalah arsitektur terbaik dengan F1 Score sebesar 96.99%.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v9i1.58186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Rempah merupakan salah satu kekayaan yang dimiliki oleh Indonesia. Berdasarkan data yang dimiliki Negari Rempah Foundation, terdapat sekitar 400 hingga 500 spesies rempah di dunia dan 275 jenis rempah terdapat di Asia Tenggara terutama di Indonesia. Jenis rempah beragam dan memiliki kemiripan satu dengan yang lain sehingga sulit untuk dibedakan. Maka dari itu untuk mempertahankan pengetahuan mengenai rempah-rempah yang dimiliki Indonesia, diperlukan aplikasi klasifikasi jenis rempah yang akurat sehingga pengetahuan masyarakat tentang rempah tetap terjaga. Selain itu di bidang industri dapat meningkatkan efisiensi dalam industri rempah. Penggunaan teknologi dalam klasifikasi jenis rempah dapat meningkatkan efisiensi dalam industri rempah. Dengan teknologi yang tepat, waktu yang dibutuhkan untuk mengidentifikasi jenis rempah dapat dipercepat, dan juga meminimalkan risiko kesalahan manusia. Keterbatasan citra rempah juga menjadi permasalahan pada klasifikasi jenis rempah. Convolutional Neural Network (CNN) dengan arsitektur transfer learning adalah metode klasifikasi citra yang memiliki performa yang baik pada dataset dengan jumlah yang terbatas. Eksperimen yang dilakukan menggunakan 6 arsitketur CNN, yaitu Xception, MobileNetV2, DenseNet201, VGG16, VGG19, dan ResNet50. Terdapat 10 jenis rempah yang diklasifikasikan yaitu jahe, kunyit, kunci, adas, merica, laos, jintan, kencur, temulawak, dan ketumbar. Berdasarkan hasil eksperimen yang dilakukan Xception adalah arsitektur terbaik dengan F1 Score sebesar 96.99%.
香料是印尼的财富之一。根据Negari香料基金会(Negari Foundation)的数据,世界上大约有400到500种香料,其中约有275种是在东南亚发现的,主要是在印度尼西亚。香料种类繁多,彼此相似,很难区分。因此,为了保持印尼香料的知识,需要一种准确的香料分类应用,以保持人们对香料的知识。在工业上,它可以提高香料行业的效率。在香料分类中使用技术可以提高香料行业的效率。有了正确的技术,识别香料种类所需要的时间可以加快,也可以降低人类错误的风险。香料种类的限制也成为香料分类的一个问题。神经网络连接(CNN)与学习转移架构是一种在有限数量的数据集上表现良好的图像分类方法。这项实验使用了CNN的6位建筑师,Xception, MobileNetV2, DenseNet201, VGG16, VGG19和ResNet50。有10种被分类的香料,如姜、姜黄、钥匙、莳萝、胡椒、老挝、孜然、孜然、肉桂和香菜。根据Xception实验的结果,F1分数最高的架构是96.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信