{"title":"Molecular Discrimination of Barbital Enantiomer at the Propofol Binding Site of the Human β3 Homomeric GABAA Receptor","authors":"T. Seto, Minoru Katō, Kennichi Koyano","doi":"10.1273/CBIJ.18.154","DOIUrl":null,"url":null,"abstract":"Intravenous anesthetic barbitals act on the GABAA receptor, and this receptor is the principal molecular target of loss of consciousness. Their action and side effects differ according to the enantiomer. Elucidation of their enantiomeric action is essential for a safe anesthetic agent. This study investigates molecular mechanisms of discrimination of enantiomeric barbital in the binding site of the GABAA receptor. Amobarbital, (R)-, (S)-pentobarbital, and (R)-, (S)-isobarbital bonded to the TM2-TM2’ transmembrane domain (TMD), i.e., the propofol binding site. There was a 2.9 kcal moldifference in enantiomeric pentobarbital bindings. Pentobarbital discrimination in the TM2-TM2’ TMD site was caused not only by the barbital ring’s hydrogen-bond, but also by steric fittings of the methyl-group adjacent to the chiral carbon atom.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"44 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.18.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intravenous anesthetic barbitals act on the GABAA receptor, and this receptor is the principal molecular target of loss of consciousness. Their action and side effects differ according to the enantiomer. Elucidation of their enantiomeric action is essential for a safe anesthetic agent. This study investigates molecular mechanisms of discrimination of enantiomeric barbital in the binding site of the GABAA receptor. Amobarbital, (R)-, (S)-pentobarbital, and (R)-, (S)-isobarbital bonded to the TM2-TM2’ transmembrane domain (TMD), i.e., the propofol binding site. There was a 2.9 kcal moldifference in enantiomeric pentobarbital bindings. Pentobarbital discrimination in the TM2-TM2’ TMD site was caused not only by the barbital ring’s hydrogen-bond, but also by steric fittings of the methyl-group adjacent to the chiral carbon atom.