Deep Learning-Based Automatic Horizon Identification from Seismic Data

Harshit Gupta, Siddhant Pradhan, Rahul Gogia, Seshan Srirangarajan, J. Phirani, Sayan Ranu
{"title":"Deep Learning-Based Automatic Horizon Identification from Seismic Data","authors":"Harshit Gupta, Siddhant Pradhan, Rahul Gogia, Seshan Srirangarajan, J. Phirani, Sayan Ranu","doi":"10.2118/196087-ms","DOIUrl":null,"url":null,"abstract":"\n Horizons in a seismic image are geologically signficant surfaces that can be used for understanding geological structures and stratigraphy models. However, horizon tracking in seismic data is a time consuming and challenging task. Saving geologist's time from this seismic interpretation task is essential given the time constraints for the decision making in the oil & gas industry. We take advantage of the deep convolutional neural networks (CNN) to track the horizons directly from the seismic images. We propose a novel automatic seismic horizon tracking method that can reduce the time needed for interpretation, as well as increase the accuracy for the geologists. We show the performance comparison of the proposed CNN model for different training data set sizes and different methods of balancing the classes.","PeriodicalId":10909,"journal":{"name":"Day 2 Tue, October 01, 2019","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 01, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196087-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Horizons in a seismic image are geologically signficant surfaces that can be used for understanding geological structures and stratigraphy models. However, horizon tracking in seismic data is a time consuming and challenging task. Saving geologist's time from this seismic interpretation task is essential given the time constraints for the decision making in the oil & gas industry. We take advantage of the deep convolutional neural networks (CNN) to track the horizons directly from the seismic images. We propose a novel automatic seismic horizon tracking method that can reduce the time needed for interpretation, as well as increase the accuracy for the geologists. We show the performance comparison of the proposed CNN model for different training data set sizes and different methods of balancing the classes.
基于深度学习的地震数据自动层位识别
地震图像中的层是具有重要地质意义的表面,可用于了解地质结构和地层模型。然而,地震数据中的水平跟踪是一项耗时且具有挑战性的任务。考虑到油气行业决策的时间限制,为地质学家节省地震解释任务的时间至关重要。我们利用深度卷积神经网络(CNN)直接从地震图像中跟踪层位。提出了一种新的地震层位自动跟踪方法,减少了解释时间,提高了地质工作者的解释精度。我们展示了所提出的CNN模型在不同训练数据集大小和不同平衡类的方法下的性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信