Question identification on twitter

Baichuan Li, Xiance Si, Michael R. Lyu, Irwin King, E. Chang
{"title":"Question identification on twitter","authors":"Baichuan Li, Xiance Si, Michael R. Lyu, Irwin King, E. Chang","doi":"10.1145/2063576.2063996","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the novel problem of automatic question identification in the microblog environment. It contains two steps: detecting tweets that contain questions (we call them \"interrogative tweets\") and extracting the tweets which really seek information or ask for help (so called \"qweets\") from interrogative tweets. To detect interrogative tweets, both traditional rule-based approach and state-of-the-art learning-based method are employed. To extract qweets, context features like short urls and Tweet-specific features like Retweets are elaborately selected for classification. We conduct an empirical study with sampled one hour's English tweets and report our experimental results for question identification on Twitter.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"45 1","pages":"2477-2480"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In this paper, we investigate the novel problem of automatic question identification in the microblog environment. It contains two steps: detecting tweets that contain questions (we call them "interrogative tweets") and extracting the tweets which really seek information or ask for help (so called "qweets") from interrogative tweets. To detect interrogative tweets, both traditional rule-based approach and state-of-the-art learning-based method are employed. To extract qweets, context features like short urls and Tweet-specific features like Retweets are elaborately selected for classification. We conduct an empirical study with sampled one hour's English tweets and report our experimental results for question identification on Twitter.
推特上的问题识别
本文研究了微博环境下的问题自动识别问题。它包含两个步骤:检测包含问题的推文(我们称之为“疑问推文”)和从疑问推文中提取真正寻求信息或寻求帮助的推文(所谓的“qweets”)。为了检测疑问性推文,采用了传统的基于规则的方法和最先进的基于学习的方法。为了提取qweets,需要精心选择上下文特征(如短url)和特定于tweet的特征(如Retweets)进行分类。我们以一个小时的英语推文为样本进行了实证研究,并报告了我们在Twitter上进行问题识别的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信