{"title":"Averages along the Square Integers: $\\ell^p$ improving and Sparse Inequalities","authors":"R. Han, M. Lacey, Fan Yang","doi":"10.2140/tunis.2021.3.517","DOIUrl":null,"url":null,"abstract":"Let $f\\in \\ell^2(\\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\\frac{1}{N}\\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \\ell ^{p}$-improving estimate, for $ 3/2 < p \\leq 2$: \\begin{equation*} \nN ^{-2/p'} \\lVert A_N f \\rVert _{ p'} \\lesssim N ^{-2/p} \\lVert f\\rVert _{\\ell ^{p}}, \\end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \\sup _{N\\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2021.3.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Let $f\in \ell^2(\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\frac{1}{N}\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \ell ^{p}$-improving estimate, for $ 3/2 < p \leq 2$: \begin{equation*}
N ^{-2/p'} \lVert A_N f \rVert _{ p'} \lesssim N ^{-2/p} \lVert f\rVert _{\ell ^{p}}, \end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \sup _{N\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.