A dai-liao hybrid conjugate gradient method for unconstrained optimization

Nasiru Salihu, M. R. Odekunle, M. Waziri, A. Halilu, Suraj Salihu
{"title":"A dai-liao hybrid conjugate gradient method for unconstrained optimization","authors":"Nasiru Salihu, M. R. Odekunle, M. Waziri, A. Halilu, Suraj Salihu","doi":"10.12928/ijio.v2i2.4100","DOIUrl":null,"url":null,"abstract":"One of todays’ best-performing CG methods is Dai-Liao (DL) method which depends on non-negative parameter  and conjugacy conditions for its computation. Although numerous optimal selections for the parameter were suggested, the best choice of  remains a subject of consideration. The pure conjugacy condition adopts an exact line search for numerical experiments and convergence analysis. Though, a practical mathematical experiment implies using an inexact line search to find the step size. To avoid such drawbacks, Dai and Liao substituted the earlier conjugacy condition with an extended conjugacy condition. Therefore, this paper suggests a new hybrid CG that combines the strength of Liu and Storey and Conjugate Descent CG methods by retaining a choice of Dai-Liao parameterthat is optimal. The theoretical analysis indicated that the search direction of the new CG scheme is descent and satisfies sufficient descent condition when the iterates jam under strong Wolfe line search. The algorithm is shown to converge globally using standard assumptions. The numerical experimentation of the scheme demonstrated that the proposed method is robust and promising than some known methods applying the performance profile Dolan and Mor´e on 250 unrestricted problems.  Numerical assessment of the tested CG algorithms with sparse signal reconstruction and image restoration in compressive sensing problems, file restoration, image video coding and other applications. The result shows that these CG schemes are comparable and can be applied in different fields such as temperature, fire, seismic sensors, and humidity detectors in forests, using wireless sensor network techniques.","PeriodicalId":52674,"journal":{"name":"International Journal of Industrial Electronics Control and Optimization","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Electronics Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12928/ijio.v2i2.4100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of todays’ best-performing CG methods is Dai-Liao (DL) method which depends on non-negative parameter  and conjugacy conditions for its computation. Although numerous optimal selections for the parameter were suggested, the best choice of  remains a subject of consideration. The pure conjugacy condition adopts an exact line search for numerical experiments and convergence analysis. Though, a practical mathematical experiment implies using an inexact line search to find the step size. To avoid such drawbacks, Dai and Liao substituted the earlier conjugacy condition with an extended conjugacy condition. Therefore, this paper suggests a new hybrid CG that combines the strength of Liu and Storey and Conjugate Descent CG methods by retaining a choice of Dai-Liao parameterthat is optimal. The theoretical analysis indicated that the search direction of the new CG scheme is descent and satisfies sufficient descent condition when the iterates jam under strong Wolfe line search. The algorithm is shown to converge globally using standard assumptions. The numerical experimentation of the scheme demonstrated that the proposed method is robust and promising than some known methods applying the performance profile Dolan and Mor´e on 250 unrestricted problems.  Numerical assessment of the tested CG algorithms with sparse signal reconstruction and image restoration in compressive sensing problems, file restoration, image video coding and other applications. The result shows that these CG schemes are comparable and can be applied in different fields such as temperature, fire, seismic sensors, and humidity detectors in forests, using wireless sensor network techniques.
无约束优化的代辽混合共轭梯度法
Dai-Liao (DL)法是目前性能最好的CG方法之一,它的计算依赖于非负参数和共轭条件。虽然提出了许多参数的最佳选择,但最佳选择仍然是一个需要考虑的问题。纯共轭条件采用精确线搜索进行数值实验和收敛分析。然而,一个实际的数学实验意味着使用不精确的直线搜索来找到步长。为了避免这些缺点,Dai和Liao用扩展共轭条件代替了先前的共轭条件。因此,本文提出了一种新的混合CG方法,该方法结合了Liu和Storey的强度和共轭下降CG方法,保留了Dai-Liao参数的最优选择。理论分析表明,该算法的搜索方向为下降,且在强Wolfe线搜索条件下迭代阻塞时满足充分下降条件。在标准假设条件下,该算法具有全局收敛性。数值实验表明,该方法具有较强的鲁棒性和较好的应用性能曲线Dolan和Mor´e在250个不受限制问题上的应用前景。数值评价了经过测试的具有稀疏信号重构和图像恢复的CG算法在压缩感知问题、文件恢复、图像视频编码等方面的应用。结果表明,采用无线传感器网络技术,这些CG方案具有可比性,可应用于森林温度、火灾、地震和湿度传感器等不同领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信