Ayobami Ezekiel, Prince Oduh, E. Okoh, C. Onah, M. Ojah, S. Adewole
{"title":"Numerical Method of Estimating Distance Between Wells","authors":"Ayobami Ezekiel, Prince Oduh, E. Okoh, C. Onah, M. Ojah, S. Adewole","doi":"10.2118/207159-ms","DOIUrl":null,"url":null,"abstract":"\n In this study, a simpler numerical model for calculating inter-well distance was developed. This model was developed as an alternative to the Ei-function used for computing pressure drops. The mainobjective of developing this model is tomake resolution of pilfering issues easyto resolve. With the developed model, calculations relating to pressure drops and more specifically, inter-well distance, can be done with greater ease and accuracy. In developing this model, the integral equation of the Eifunction in the pressure drop equation was solved numerically. The numerical solution reduced thepressure drop equation to a polynomial equation which is much easier to solve. The developed model was used to solve real problems. Results generated from it were compared with those obtained using previous approaches. Important informationsuch as well configuration, region of the reservoir, and transient history wherethe work is valid are stated. The development of the correlations and tables forthe range of validity and values of the Ei-function is a major quantum leap in well testing and analysis. It will be quite cumbersome to resolve integrals with unknowns, hence, methods of trials and errors have been resorted to over the years. However, this new approach resolved the pressure drop equation into a systemof polynomials which is much easier to solve. Consequently, the distance betweenpossibly interfering wells (which is an important variable during interference test) can now be gotten with ease. The developed model is valid within the range of validity of the Ei-function. Without doubt, this work will help redefine the pressure drop equation into a polynomial equation which can easily be resolved using any of the known approaches to solving problems involving polynomials. More so, getting the correct distance betweenthe two wells in question is pivotal to the test. With the model developed in this work, getting inter-well distance is now easier and more accurate.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207159-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a simpler numerical model for calculating inter-well distance was developed. This model was developed as an alternative to the Ei-function used for computing pressure drops. The mainobjective of developing this model is tomake resolution of pilfering issues easyto resolve. With the developed model, calculations relating to pressure drops and more specifically, inter-well distance, can be done with greater ease and accuracy. In developing this model, the integral equation of the Eifunction in the pressure drop equation was solved numerically. The numerical solution reduced thepressure drop equation to a polynomial equation which is much easier to solve. The developed model was used to solve real problems. Results generated from it were compared with those obtained using previous approaches. Important informationsuch as well configuration, region of the reservoir, and transient history wherethe work is valid are stated. The development of the correlations and tables forthe range of validity and values of the Ei-function is a major quantum leap in well testing and analysis. It will be quite cumbersome to resolve integrals with unknowns, hence, methods of trials and errors have been resorted to over the years. However, this new approach resolved the pressure drop equation into a systemof polynomials which is much easier to solve. Consequently, the distance betweenpossibly interfering wells (which is an important variable during interference test) can now be gotten with ease. The developed model is valid within the range of validity of the Ei-function. Without doubt, this work will help redefine the pressure drop equation into a polynomial equation which can easily be resolved using any of the known approaches to solving problems involving polynomials. More so, getting the correct distance betweenthe two wells in question is pivotal to the test. With the model developed in this work, getting inter-well distance is now easier and more accurate.