Optimal control of an HIV model with a trilinear antibody growth function

K. Allali, Sanaa Harroudi, Delfim F. M. Torres
{"title":"Optimal control of an HIV model with a trilinear antibody growth function","authors":"K. Allali, Sanaa Harroudi, Delfim F. M. Torres","doi":"10.3934/dcdss.2021148","DOIUrl":null,"url":null,"abstract":"We propose and study a new mathematical model of the human immunodeficiency virus (HIV). The main novelty is to consider that the antibody growth depends not only on the virus and on the antibodies concentration but also on the uninfected cells concentration. The model consists of five nonlinear differential equations describing the evolution of the uninfected cells, the infected ones, the free viruses, and the adaptive immunity. The adaptive immune response is represented by the cytotoxic T-lymphocytes (CTL) cells and the antibodies with the growth function supposed to be trilinear. The model includes two kinds of treatments. The objective of the first one is to reduce the number of infected cells, while the aim of the second is to block free viruses. Firstly, the positivity and the boundedness of solutions are established. After that, the local stability of the disease free steady state and the infection steady states are characterized. Next, an optimal control problem is posed and investigated. Finally, numerical simulations are performed in order to show the behavior of solutions and the effectiveness of the two incorporated treatments via an efficient optimal control strategy.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2021148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose and study a new mathematical model of the human immunodeficiency virus (HIV). The main novelty is to consider that the antibody growth depends not only on the virus and on the antibodies concentration but also on the uninfected cells concentration. The model consists of five nonlinear differential equations describing the evolution of the uninfected cells, the infected ones, the free viruses, and the adaptive immunity. The adaptive immune response is represented by the cytotoxic T-lymphocytes (CTL) cells and the antibodies with the growth function supposed to be trilinear. The model includes two kinds of treatments. The objective of the first one is to reduce the number of infected cells, while the aim of the second is to block free viruses. Firstly, the positivity and the boundedness of solutions are established. After that, the local stability of the disease free steady state and the infection steady states are characterized. Next, an optimal control problem is posed and investigated. Finally, numerical simulations are performed in order to show the behavior of solutions and the effectiveness of the two incorporated treatments via an efficient optimal control strategy.
具有三线性抗体生长函数的HIV模型的最优控制
我们提出并研究了一个新的人类免疫缺陷病毒(HIV)的数学模型。主要的新颖之处在于考虑到抗体的生长不仅取决于病毒和抗体的浓度,还取决于未感染细胞的浓度。该模型由五个非线性微分方程组成,分别描述了未感染细胞、感染细胞、游离病毒和适应性免疫的进化过程。适应性免疫反应以细胞毒性t淋巴细胞(CTL)和生长功能呈三线性的抗体为代表。该模型包括两种处理方法。第一种方法的目的是减少感染细胞的数量,而第二种方法的目的是阻断游离病毒。首先,建立了解的正性和有界性。然后对无病稳态和感染稳态的局部稳定性进行了表征。其次,提出并研究了最优控制问题。最后进行了数值模拟,通过有效的最优控制策略来展示解的行为和两种合并处理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信