Constructions of linear codes with two or three weights from vectorial dual-bent functions

Jiaxin Wang, Zexia Shi, Yadi Wei, Fang-Wei Fu
{"title":"Constructions of linear codes with two or three weights from vectorial dual-bent functions","authors":"Jiaxin Wang, Zexia Shi, Yadi Wei, Fang-Wei Fu","doi":"10.48550/arXiv.2207.11668","DOIUrl":null,"url":null,"abstract":"Linear codes with a few weights are an important class of codes in coding theory and have attracted a lot of attention. In this paper, we present several constructions of $q$-ary linear codes with two or three weights from vectorial dual-bent functions, where $q$ is a power of an odd prime $p$. The weight distributions of the constructed $q$-ary linear codes are completely determined. We illustrate that some known constructions in the literature can be obtained by our constructions. In some special cases, our constructed linear codes can meet the Griesmer bound. Furthermore, based on the constructed $q$-ary linear codes, we obtain secret sharing schemes with interesting access structures.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.11668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Linear codes with a few weights are an important class of codes in coding theory and have attracted a lot of attention. In this paper, we present several constructions of $q$-ary linear codes with two or three weights from vectorial dual-bent functions, where $q$ is a power of an odd prime $p$. The weight distributions of the constructed $q$-ary linear codes are completely determined. We illustrate that some known constructions in the literature can be obtained by our constructions. In some special cases, our constructed linear codes can meet the Griesmer bound. Furthermore, based on the constructed $q$-ary linear codes, we obtain secret sharing schemes with interesting access structures.
由向量双弯曲函数构造两个或三个权值的线性码
具有少量权值的线性码是编码理论中一类重要的码,引起了人们的广泛关注。本文给出了由向量双弯曲函数构造的具有两个或三个权值的$q$线性码,其中$q$是奇素数$p$的幂。所构造的$q$ y线性码的权值分布完全确定。我们举例说明,一些已知的结构在文献中可以得到由我们的结构。在某些特殊情况下,我们构造的线性码可以满足Griesmer界。此外,基于所构造的$q$-ary线性码,我们得到了具有有趣访问结构的秘密共享方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信