An AI Using Construction Grammar to Understand Text: Parsing Improvements

Pub Date : 2021-04-01 DOI:10.4018/ijcini.20210401.oa4
Denis Kiselev
{"title":"An AI Using Construction Grammar to Understand Text: Parsing Improvements","authors":"Denis Kiselev","doi":"10.4018/ijcini.20210401.oa4","DOIUrl":null,"url":null,"abstract":"This paper describes an AI that uses construction grammar (CG)—a means of knowledge representation for deep understanding of text. The proposed improvements aim at more versatility of the text form and meaning knowledge structure, as well as for intelligent choosing among possible parses. Along with the improvements, computational CG techniques that form the implementation basis are explained. Evaluation experiments utilize a Winograd schema (WS)—a major test for AI—dataset and compare the implementation with state-of-the-art ones. Results have demonstrated that compared with such techniques as deep learning, the proposed CG approach has a higher potential for the task of anaphora resolution involving deep understanding of the natural language.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes an AI that uses construction grammar (CG)—a means of knowledge representation for deep understanding of text. The proposed improvements aim at more versatility of the text form and meaning knowledge structure, as well as for intelligent choosing among possible parses. Along with the improvements, computational CG techniques that form the implementation basis are explained. Evaluation experiments utilize a Winograd schema (WS)—a major test for AI—dataset and compare the implementation with state-of-the-art ones. Results have demonstrated that compared with such techniques as deep learning, the proposed CG approach has a higher potential for the task of anaphora resolution involving deep understanding of the natural language.
分享
查看原文
使用结构语法理解文本的AI:解析改进
本文描述了一种使用构造语法(CG)的人工智能——一种用于深度理解文本的知识表示方法。提出的改进旨在提高文本形式和意义知识结构的通用性,以及在可能的解析中进行智能选择。随着改进,计算CG技术形成的实现基础进行了解释。评估实验利用Winograd模式(WS) -人工智能数据集的主要测试,并将其实现与最先进的实现进行比较。结果表明,与深度学习等技术相比,所提出的CG方法在涉及对自然语言的深度理解的回指解决任务方面具有更高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信