Viscosity solutions of systems of PDEs with interconnected obstacles and switching problem without monotonicity condition

Asymptot. Anal. Pub Date : 2018-02-13 DOI:10.3233/ASY-181508
S. Hamadène, M. Mnif, Sarra Neffati
{"title":"Viscosity solutions of systems of PDEs with interconnected obstacles and switching problem without monotonicity condition","authors":"S. Hamadène, M. Mnif, Sarra Neffati","doi":"10.3233/ASY-181508","DOIUrl":null,"url":null,"abstract":"We show the existence and uniqueness of a continuous viscosity solution of a system of partial differential equations (PDEs for short) without assuming the usual monotonicity conditions on the driver function as in Hamad\\`ene and Morlais's article \\cite{hamadene2013viscosity}. Our method strongly relies on the link between PDEs and reflected backward stochastic differential equations with interconnected obstacles for which we already know that the solution exists and is unique for general drivers.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"1 1","pages":"123-136"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show the existence and uniqueness of a continuous viscosity solution of a system of partial differential equations (PDEs for short) without assuming the usual monotonicity conditions on the driver function as in Hamad\`ene and Morlais's article \cite{hamadene2013viscosity}. Our method strongly relies on the link between PDEs and reflected backward stochastic differential equations with interconnected obstacles for which we already know that the solution exists and is unique for general drivers.
无单调条件下具有连通障碍的偏微分方程系统和切换问题的黏度解
我们证明了一个偏微分方程系统(简称偏微分方程)的连续黏性解的存在性和唯一性,而不像hamad和Morlais的文章\cite{hamadene2013viscosity}中那样假定驱动函数的通常单调性条件。我们的方法在很大程度上依赖于偏微分方程和反射后向随机微分方程之间的联系,这些方程具有相互连接的障碍物,我们已经知道解存在并且对于一般驱动程序是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信