Height and Uprightness Invariance for 3D Prediction From a Single View

Manel Baradad, A. Torralba
{"title":"Height and Uprightness Invariance for 3D Prediction From a Single View","authors":"Manel Baradad, A. Torralba","doi":"10.1109/CVPR42600.2020.00057","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art methods that predict 3D from single images ignore the fact that the height of objects and their upright orientation is invariant to the camera pose and intrinsic parameters. To account for this, we propose a system that directly regresses 3D world coordinates for each pixel. First, our system predicts the camera position with respect to the ground plane and its intrinsic parameters. Followed by that, it predicts the 3D position for each pixel along the rays spanned by the camera. The predicted 3D coordinates and normals are invariant to a change in the camera position or its model, and we can directly impose a regression loss on these world coordinates. Our approach yields competitive results for depth and camera pose estimation (while not being explicitly trained to predict any of these) and improves across-dataset generalization performance over existing state-of-the-art methods.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"33 1","pages":"488-497"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Current state-of-the-art methods that predict 3D from single images ignore the fact that the height of objects and their upright orientation is invariant to the camera pose and intrinsic parameters. To account for this, we propose a system that directly regresses 3D world coordinates for each pixel. First, our system predicts the camera position with respect to the ground plane and its intrinsic parameters. Followed by that, it predicts the 3D position for each pixel along the rays spanned by the camera. The predicted 3D coordinates and normals are invariant to a change in the camera position or its model, and we can directly impose a regression loss on these world coordinates. Our approach yields competitive results for depth and camera pose estimation (while not being explicitly trained to predict any of these) and improves across-dataset generalization performance over existing state-of-the-art methods.
单视图三维预测的高度和垂直不变性
目前最先进的方法,从单个图像预测3D忽略了一个事实,即物体的高度和它们的垂直方向是不变的相机姿态和内在参数。为了解决这个问题,我们提出了一个直接回归每个像素的3D世界坐标的系统。首先,我们的系统预测相机位置相对于地平面及其固有参数。然后,它沿着相机跨越的光线预测每个像素的3D位置。预测的三维坐标和法线对摄像机位置或其模型的变化是不变的,我们可以直接对这些世界坐标施加回归损失。我们的方法在深度和相机姿态估计方面产生了有竞争力的结果(虽然没有被明确地训练来预测这些),并且比现有的最先进的方法提高了跨数据集的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信