A Safe Virtual Machine Scheduling Strategy for Energy Conservation and Privacy Protection of Server Clusters in Cloud Data Centers

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiaoyun Han;Chaoxu Mu;Jiebei Zhu;Hongjie Jia
{"title":"A Safe Virtual Machine Scheduling Strategy for Energy Conservation and Privacy Protection of Server Clusters in Cloud Data Centers","authors":"Xiaoyun Han;Chaoxu Mu;Jiebei Zhu;Hongjie Jia","doi":"10.1109/TSUSC.2023.3303637","DOIUrl":null,"url":null,"abstract":"With the increasing scale of cloud data centers (CDCs), the energy consumption of CDCs is sharply increasing. In this article, an efficient energy-saving strategy is proposed for CDCs. The greedy virtual machine (VM) deployment strategy is obtained by using the least number of servers, the heuristic VM migration strategy is obtained by using the improved double threshold algorithm, and the comprehensive VM scheduling strategy of severs is obtained by combining deployment and migration strategies. Furthermore, for the privacy security of VM scheduling, a safety-oriented energy-saving scheme based on information difference is proposed to ensure the dataset availability under privacy protection, comparing with \n<inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>\n-differential privacy algorithm and \n<inline-formula><tex-math>$(\\varepsilon, \\delta)$</tex-math></inline-formula>\n-differential privacy algorithm. Simulation results show that the safe energy-saving strategy can significantly reduce the energy consumption in CDCs with guaranteeing the security and availability of the important datasets.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 1","pages":"46-60"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10237264/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing scale of cloud data centers (CDCs), the energy consumption of CDCs is sharply increasing. In this article, an efficient energy-saving strategy is proposed for CDCs. The greedy virtual machine (VM) deployment strategy is obtained by using the least number of servers, the heuristic VM migration strategy is obtained by using the improved double threshold algorithm, and the comprehensive VM scheduling strategy of severs is obtained by combining deployment and migration strategies. Furthermore, for the privacy security of VM scheduling, a safety-oriented energy-saving scheme based on information difference is proposed to ensure the dataset availability under privacy protection, comparing with $\varepsilon$ -differential privacy algorithm and $(\varepsilon, \delta)$ -differential privacy algorithm. Simulation results show that the safe energy-saving strategy can significantly reduce the energy consumption in CDCs with guaranteeing the security and availability of the important datasets.
云数据中心服务器集群节能与隐私保护的安全虚拟机调度策略
随着云数据中心(CDC)规模的不断扩大,CDC 的能耗也在急剧增加。本文提出了一种针对云数据中心的高效节能策略。利用最少的服务器数量获得贪婪的虚拟机(VM)部署策略,利用改进的双阈值算法获得启发式的虚拟机迁移策略,结合部署和迁移策略获得全面的虚拟机调度策略。此外,针对虚拟机调度的隐私安全问题,对比$\varepsilon$差分隐私算法和$(\varepsilon, \delta)$差分隐私算法,提出了一种基于信息差分的面向安全的节能方案,以确保隐私保护下的数据集可用性。仿真结果表明,在保证重要数据集的安全性和可用性的前提下,安全节能策略能显著降低 CDC 的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信