{"title":"Distributed Potential Theory and its Application for Spar-Type Floating Offshore Wind Turbines","authors":"E. Engebretsen, H. Haslum, O. Aagaard","doi":"10.1115/omae2020-18284","DOIUrl":null,"url":null,"abstract":"\n Coupled aero-hydro-servo-elastic time-domain analysis is required for robust design and engineering of Floating Offshore Wind Turbines (FOWTs). For spar-type FOWTs, it is convenient to adopt a nonlinear beam finite element formulation in order to capture the coupled structural response of substructure, tower, blades and mooring lines accurately.\n The Distributed Potential Theory (DPT) approach applies first-order frequency-dependent added mass, radiation damping and excitation loads distributed over all submerged beam elements in the coupled time-domain simulation, as obtained from diffraction/radiation analysis. This approach therefore includes frequency-dependent diffraction effects for all wavelengths, while keeping the substructure flexible, thus enabling hydro-elastic coupling and extraction of internal sectional loads along the substructure.\n This paper demonstrates the use of DPT in coupled aero-hydro-servo-elastic time-domain analysis of a spar-type FOWT and illustrates the effect on tower and substructure fatigue life compared to using the classical Morison approach.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Coupled aero-hydro-servo-elastic time-domain analysis is required for robust design and engineering of Floating Offshore Wind Turbines (FOWTs). For spar-type FOWTs, it is convenient to adopt a nonlinear beam finite element formulation in order to capture the coupled structural response of substructure, tower, blades and mooring lines accurately.
The Distributed Potential Theory (DPT) approach applies first-order frequency-dependent added mass, radiation damping and excitation loads distributed over all submerged beam elements in the coupled time-domain simulation, as obtained from diffraction/radiation analysis. This approach therefore includes frequency-dependent diffraction effects for all wavelengths, while keeping the substructure flexible, thus enabling hydro-elastic coupling and extraction of internal sectional loads along the substructure.
This paper demonstrates the use of DPT in coupled aero-hydro-servo-elastic time-domain analysis of a spar-type FOWT and illustrates the effect on tower and substructure fatigue life compared to using the classical Morison approach.