PMU-based reduced-order modeling of power system dynamics via selective modal analysis

Benjamin P. Wiseman, Yang Chen, Le Xie, P. Kumar
{"title":"PMU-based reduced-order modeling of power system dynamics via selective modal analysis","authors":"Benjamin P. Wiseman, Yang Chen, Le Xie, P. Kumar","doi":"10.1109/TDC.2016.7519866","DOIUrl":null,"url":null,"abstract":"This paper investigates how to perform online system identification employing synchrophasor data. Two approaches to identifying a reduced-order model are presented: a purely data-driven approach, and an approach that integrates online data-driven dynamic system identification with firstprinciple offline selective modal analysis. With prior knowledge of the frequency range interesting to power system operators, it is shown that the second approach recovers the key modes of the original system and produces a much reduced-order model of grid-level dynamics. Even with the presence of uncertainty about the actual modes of interest, an automatic tuning scheme is devised to adaptively adjust the frequency range to improve system identification. Numerical examples with synthetic synchrophasor data demonstrate the efficacy of the proposed identification approach.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"78 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper investigates how to perform online system identification employing synchrophasor data. Two approaches to identifying a reduced-order model are presented: a purely data-driven approach, and an approach that integrates online data-driven dynamic system identification with firstprinciple offline selective modal analysis. With prior knowledge of the frequency range interesting to power system operators, it is shown that the second approach recovers the key modes of the original system and produces a much reduced-order model of grid-level dynamics. Even with the presence of uncertainty about the actual modes of interest, an automatic tuning scheme is devised to adaptively adjust the frequency range to improve system identification. Numerical examples with synthetic synchrophasor data demonstrate the efficacy of the proposed identification approach.
基于pmu的选择模态分析电力系统动力学降阶建模
本文研究了如何利用同步量数据进行在线系统辨识。提出了两种识别降阶模型的方法:一种是纯数据驱动的方法,另一种是将在线数据驱动的动态系统识别与第一原理离线选择模态分析相结合的方法。利用电力系统操作员感兴趣的频率范围的先验知识,第二种方法恢复了原始系统的关键模式,并产生了一个大大降低阶的电网级动力学模型。在实际模式存在不确定性的情况下,设计了一种自适应调整频率范围的自动调谐方案,以提高系统的辨识度。采用合成同步量数据的数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信