Parametric Analysis of BFOA for Minimization Problems Using a Benchmark Function

Dannyll Michellc Zambrano, Darío Vélez, Yohanna Daza, J. M. Palomares
{"title":"Parametric Analysis of BFOA for Minimization Problems Using a Benchmark Function","authors":"Dannyll Michellc Zambrano, Darío Vélez, Yohanna Daza, J. M. Palomares","doi":"10.29019/enfoque.v10n3.490","DOIUrl":null,"url":null,"abstract":"This paper presents the social foraging behavior of Escherichia coli (E. Coli) bacteria based on Bacteria Foraging Optimization algorithms (BFOA) to find optimization and distributed control values. The search strategy for E. coli is very complex to express and the dynamics of the simulated chemotaxis stage in BFOA is analyzed with the help of a simple mathematical model. The methodology starts from a detailed analysis of the parameters of bacterial swimming and tumbling (C) and the probability of elimination and dispersion (Ped), then an adaptive variant of BFOA is proposed, in which the size of the chemotherapeutic step is adjusted according to the current suitability of a virtual bacterium. To evaluate the performance of the algorithm in obtaining optimal values, the resolution was applied to one of the benchmark functions, in this case the Ackley minimization function, a comparative analysis of the BFOA is then performed. The simulation results have shown the validity of the optimal values (minimum or maximum) obtained on a specific function for real world problems, with a function belonging to the benchmark group of optimization functions.","PeriodicalId":72918,"journal":{"name":"Enfoque UTE : revista cientifica","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enfoque UTE : revista cientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29019/enfoque.v10n3.490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the social foraging behavior of Escherichia coli (E. Coli) bacteria based on Bacteria Foraging Optimization algorithms (BFOA) to find optimization and distributed control values. The search strategy for E. coli is very complex to express and the dynamics of the simulated chemotaxis stage in BFOA is analyzed with the help of a simple mathematical model. The methodology starts from a detailed analysis of the parameters of bacterial swimming and tumbling (C) and the probability of elimination and dispersion (Ped), then an adaptive variant of BFOA is proposed, in which the size of the chemotherapeutic step is adjusted according to the current suitability of a virtual bacterium. To evaluate the performance of the algorithm in obtaining optimal values, the resolution was applied to one of the benchmark functions, in this case the Ackley minimization function, a comparative analysis of the BFOA is then performed. The simulation results have shown the validity of the optimal values (minimum or maximum) obtained on a specific function for real world problems, with a function belonging to the benchmark group of optimization functions.
基于基准函数的最优化问题的BFOA参数分析
提出了基于细菌觅食优化算法(BFOA)的大肠杆菌群体觅食行为,以寻找最优控制值和分布控制值。大肠杆菌的搜索策略表达非常复杂,利用简单的数学模型分析了BFOA模拟趋化阶段的动力学过程。该方法首先详细分析了细菌游动和滚动的参数(C)和消除和分散的概率(Ped),然后提出了一种自适应的BFOA变体,其中根据虚拟细菌的当前适宜性调整化疗步骤的大小。为了评估该算法在获取最优值方面的性能,将分辨率应用于其中一个基准函数,在这种情况下是Ackley最小化函数,然后对BFOA进行比较分析。仿真结果表明,对于实际问题,在特定函数上得到的最优值(最小值或最大值)是有效的,其中一个函数属于优化函数的基准组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信