{"title":"The SVM-Minus Similarity Score for Video Face Recognition","authors":"Lior Wolf, Noga Levy","doi":"10.1109/CVPR.2013.452","DOIUrl":null,"url":null,"abstract":"Challenge, but also an opportunity to eliminate spurious similarities. Luckily, a major source of confusion in visual similarity of faces is the 3D head orientation, for which image analysis tools provide an accurate estimation. The method we propose belongs to a family of classifier-based similarity scores. We present an effective way to discount pose induced similarities within such a framework, which is based on a newly introduced classifier called SVM-minus. The presented method is shown to outperform existing techniques on the most challenging and realistic publicly available video face recognition benchmark, both by itself, and in concert with other methods.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"78 1","pages":"3523-3530"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
Challenge, but also an opportunity to eliminate spurious similarities. Luckily, a major source of confusion in visual similarity of faces is the 3D head orientation, for which image analysis tools provide an accurate estimation. The method we propose belongs to a family of classifier-based similarity scores. We present an effective way to discount pose induced similarities within such a framework, which is based on a newly introduced classifier called SVM-minus. The presented method is shown to outperform existing techniques on the most challenging and realistic publicly available video face recognition benchmark, both by itself, and in concert with other methods.