On the generalization of the error and error estimation process of Ortiz’s recursive formulation of the tau method

B.M. Yisa, R.B. Adeniyi
{"title":"On the generalization of the error and error estimation process of Ortiz’s recursive formulation of the tau method","authors":"B.M. Yisa,&nbsp;R.B. Adeniyi","doi":"10.1016/j.jnnms.2014.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the generalization of the Lanczos–Ortiz’s Recursive formulation of the tau method for general non-overdetermined ordinary differential equations is presented. The generalization of the canonical polynomials and their derivatives for both overdetermined and non-overdetermined cases were reported in the earlier works of these authors, thus the emphasis here is on the error and the error estimate procedures. The accuracy of the results were established using some numerical examples and the induction principle.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"34 1","pages":"Pages 70-82"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2014.10.006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896514000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the generalization of the Lanczos–Ortiz’s Recursive formulation of the tau method for general non-overdetermined ordinary differential equations is presented. The generalization of the canonical polynomials and their derivatives for both overdetermined and non-overdetermined cases were reported in the earlier works of these authors, thus the emphasis here is on the error and the error estimate procedures. The accuracy of the results were established using some numerical examples and the induction principle.

关于误差的概化和误差估计过程的Ortiz递归公式的tau方法
本文推广了一般非过定常微分方程中tau方法的Lanczos-Ortiz递推公式。这些作者在早期的著作中报道了典型多项式及其导数在超定和非超定情况下的泛化,因此这里的重点是误差和误差估计程序。通过数值算例和归纳原理,验证了计算结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信