Bounds for the zeros of unilateral octonionic polynomials

IF 0.8 4区 数学 Q2 MATHEMATICS
R. Serôdio, P. Beites, J. Vitória
{"title":"Bounds for the zeros of unilateral octonionic polynomials","authors":"R. Serôdio, P. Beites, J. Vitória","doi":"10.2478/auom-2021-0043","DOIUrl":null,"url":null,"abstract":"Abstract In the present work it is proved that the zeros of a unilateral octonionic polynomial belong to the conjugacy classes of the latent roots of an appropriate lambda-matrix. This allows the use of matricial norms, and matrix norms in particular, to obtain upper and lower bounds for the zeros of unilateral octonionic polynomials. Some results valid for complex and/or matrix polynomials are extended to octonionic polynomials.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"78 1","pages":"243 - 267"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In the present work it is proved that the zeros of a unilateral octonionic polynomial belong to the conjugacy classes of the latent roots of an appropriate lambda-matrix. This allows the use of matricial norms, and matrix norms in particular, to obtain upper and lower bounds for the zeros of unilateral octonionic polynomials. Some results valid for complex and/or matrix polynomials are extended to octonionic polynomials.
单侧八元多项式的零点界
摘要本文证明了单侧八元多项式的零属于一个合适的λ -矩阵的隐根的共轭类。这允许使用材料范数,特别是矩阵范数,来获得单边八元多项式零点的上界和下界。一些对复多项式和/或矩阵多项式有效的结果推广到八元多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信