Parameter identification of permanent magnet synchronous machine based on metaheuristic optimization

A. Balamurali, A. Mollaeian, S. M. Sangdehi, N. Kar
{"title":"Parameter identification of permanent magnet synchronous machine based on metaheuristic optimization","authors":"A. Balamurali, A. Mollaeian, S. M. Sangdehi, N. Kar","doi":"10.1109/IEMDC.2015.7409297","DOIUrl":null,"url":null,"abstract":"Understanding the significance of precise dynamic modeling of electrical machines and the importance of parameter determination for the same, this manuscript proposes a new method of identifying variable inductances and damper parameters of a line-start interior permanent magnet synchronous machine (LSIPMSM) through an off-line improved particle swarm optimization (IPSO). An improved dynamic machine model incorporating the dependence of inductances on magnetizing currents has been developed. Through the combination of experimental test methods conducted on the inverter connected LSIPMSM under varied operating conditions and IPSO algorithm, parameters such as stator and magnetizing inductances and damper parameters have been identified for all conditions. Though conducted on LSIPMSM, the modeling and identification procedures presented in this paper are also applicable to IPMSM and surface magnet PSM with simplified variations. Comparison results of experiments with conventional and improved models are also presented for validation.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"9 1","pages":"1729-1734"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Understanding the significance of precise dynamic modeling of electrical machines and the importance of parameter determination for the same, this manuscript proposes a new method of identifying variable inductances and damper parameters of a line-start interior permanent magnet synchronous machine (LSIPMSM) through an off-line improved particle swarm optimization (IPSO). An improved dynamic machine model incorporating the dependence of inductances on magnetizing currents has been developed. Through the combination of experimental test methods conducted on the inverter connected LSIPMSM under varied operating conditions and IPSO algorithm, parameters such as stator and magnetizing inductances and damper parameters have been identified for all conditions. Though conducted on LSIPMSM, the modeling and identification procedures presented in this paper are also applicable to IPMSM and surface magnet PSM with simplified variations. Comparison results of experiments with conventional and improved models are also presented for validation.
基于元启发式优化的永磁同步电机参数辨识
认识到电机精确动态建模的重要性和参数确定的重要性,本文提出了一种利用离线改进粒子群优化(IPSO)识别线路启动内置永磁同步电机(LSIPMSM)可变电感和阻尼器参数的新方法。提出了一种改进的动态电机模型,该模型考虑了电感对磁化电流的依赖关系。通过对逆变器连接的LSIPMSM在不同工况下的实验测试方法与IPSO算法相结合,确定了各种工况下的定子、磁化电感、阻尼器参数等参数。本文的建模和识别方法虽然是针对LSIPMSM进行的,但也适用于IPMSM和表面磁体PSM的简化变化。并与常规模型和改进模型的实验结果进行了对比验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信