MAD Control Chart for Autoregressive Models with Skew-Normal Distribution

Q3 Mathematics
Vahideh Gorgin, B. Sadeghpour Gildeh
{"title":"MAD Control Chart for Autoregressive Models with Skew-Normal Distribution","authors":"Vahideh Gorgin, B. Sadeghpour Gildeh","doi":"10.1515/eqc-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract The major problem in analyzing control charts is to work with autocorrelated data. This problem can be solved by fitting a suitable model to the data and using the control chart for the residuals. The problem becomes very important, when the distribution of observation is nonnormal, in addition to being autocorrelated. Much recent research has focused on the development of appropriate statistical process control techniques for the autocorrelated data or nonnormal distribution, but few studies have considered monitoring the process mean of both nonnormal and autocorrelated data. In this paper, a simulation study is conducted to compare the performances of the control chart based on the median absolute deviation method (MAD) with those of existing control charts for the skew normal distribution. Simulation results indicate considerable improvement over existing control charts for nonnormal data can be achieved when the control charts with control limits based on the MAD method are used to monitor the process mean of nonnormal autocorrelated data.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"15 2 1","pages":"17 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The major problem in analyzing control charts is to work with autocorrelated data. This problem can be solved by fitting a suitable model to the data and using the control chart for the residuals. The problem becomes very important, when the distribution of observation is nonnormal, in addition to being autocorrelated. Much recent research has focused on the development of appropriate statistical process control techniques for the autocorrelated data or nonnormal distribution, but few studies have considered monitoring the process mean of both nonnormal and autocorrelated data. In this paper, a simulation study is conducted to compare the performances of the control chart based on the median absolute deviation method (MAD) with those of existing control charts for the skew normal distribution. Simulation results indicate considerable improvement over existing control charts for nonnormal data can be achieved when the control charts with control limits based on the MAD method are used to monitor the process mean of nonnormal autocorrelated data.
偏正态分布自回归模型的MAD控制图
控制图分析的主要问题是处理自相关数据。这个问题可以通过对数据拟合合适的模型和对残差使用控制图来解决。除了自相关外,当观测值的分布是非正态分布时,这个问题变得非常重要。近年来的研究主要集中在发展适合自相关数据或非正态分布的统计过程控制技术,但很少有研究考虑监测非正态数据和自相关数据的过程平均值。本文通过仿真研究,比较了基于中位数绝对偏差法(MAD)的控制图与现有的偏态正态分布控制图的性能。仿真结果表明,将基于MAD方法的控制限控制图用于监测非正态自相关数据的过程均值,可以取得比现有的非正态数据控制图有较大改进的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信