Evaluating Speech, Face, Emotion and Body Movement Time-series Features for Automated Multimodal Presentation Scoring

Vikram Ramanarayanan, C. W. Leong, L. Chen, G. Feng, David Suendermann-Oeft
{"title":"Evaluating Speech, Face, Emotion and Body Movement Time-series Features for Automated Multimodal Presentation Scoring","authors":"Vikram Ramanarayanan, C. W. Leong, L. Chen, G. Feng, David Suendermann-Oeft","doi":"10.1145/2818346.2820765","DOIUrl":null,"url":null,"abstract":"We analyze how fusing features obtained from different multimodal data streams such as speech, face, body movement and emotion tracks can be applied to the scoring of multimodal presentations. We compute both time-aggregated and time-series based features from these data streams--the former being statistical functionals and other cumulative features computed over the entire time series, while the latter, dubbed histograms of cooccurrences, capture how different prototypical body posture or facial configurations co-occur within different time-lags of each other over the evolution of the multimodal, multivariate time series. We examine the relative utility of these features, along with curated speech stream features in predicting human-rated scores of multiple aspects of presentation proficiency. We find that different modalities are useful in predicting different aspects, even outperforming a naive human inter-rater agreement baseline for a subset of the aspects analyzed.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

We analyze how fusing features obtained from different multimodal data streams such as speech, face, body movement and emotion tracks can be applied to the scoring of multimodal presentations. We compute both time-aggregated and time-series based features from these data streams--the former being statistical functionals and other cumulative features computed over the entire time series, while the latter, dubbed histograms of cooccurrences, capture how different prototypical body posture or facial configurations co-occur within different time-lags of each other over the evolution of the multimodal, multivariate time series. We examine the relative utility of these features, along with curated speech stream features in predicting human-rated scores of multiple aspects of presentation proficiency. We find that different modalities are useful in predicting different aspects, even outperforming a naive human inter-rater agreement baseline for a subset of the aspects analyzed.
评价语音,面部,情绪和身体运动时间序列特征的自动多模态演示评分
我们分析了如何融合从不同的多模态数据流中获得的特征,如语音,面部,身体运动和情感轨迹,可以应用于多模态演示的评分。我们从这些数据流中计算时间聚合和基于时间序列的特征——前者是在整个时间序列中计算的统计函数和其他累积特征,而后者被称为共同发生的直方图,捕捉在多模态、多变量时间序列的演变中,不同的原型身体姿势或面部配置如何在不同的时间滞后内共同发生。我们研究了这些特征的相对效用,以及在预测演示熟练程度的多个方面的人类评分分数方面的策划语音流特征。我们发现不同的模式在预测不同的方面是有用的,甚至在分析的方面的一个子集中优于幼稚的人类内部协议基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信