The Ramified analytical Hierarchy using Extended Logics

Pub Date : 2018-08-11 DOI:10.1017/BSL.2018.69
P. Welch
{"title":"The Ramified analytical Hierarchy using Extended Logics","authors":"P. Welch","doi":"10.1017/BSL.2018.69","DOIUrl":null,"url":null,"abstract":"The use of Extended Logics to replace ordinary second order definability in Kleene’s Ramified Analytical Hierarchy is investigated. This mirrors a similar investigation of Kennedy, Magidor and Väänänen [11] where Gödel’s universe L of constructible sets is subjected to similar variance. Enhancing second order definability allows models to be defined which may or may not coincide with the original Kleene hierarchy in domain. Extending the logic with game quantifiers, and assuming strong axioms of infinity, we obtain minimal correct models of analysis. A wide spectrum of models can be so generated from abstract definability notions: one may take an abstract Spector Class and extract an extended logic for it. The resultant structure is then a minimal model of the given kind of definability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/BSL.2018.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Extended Logics to replace ordinary second order definability in Kleene’s Ramified Analytical Hierarchy is investigated. This mirrors a similar investigation of Kennedy, Magidor and Väänänen [11] where Gödel’s universe L of constructible sets is subjected to similar variance. Enhancing second order definability allows models to be defined which may or may not coincide with the original Kleene hierarchy in domain. Extending the logic with game quantifiers, and assuming strong axioms of infinity, we obtain minimal correct models of analysis. A wide spectrum of models can be so generated from abstract definability notions: one may take an abstract Spector Class and extract an extended logic for it. The resultant structure is then a minimal model of the given kind of definability.
分享
查看原文
应用扩展逻辑的分支分析层次结构
研究了用扩展逻辑代替Kleene分支分析层次中普通二阶可定义性的问题。这反映了Kennedy, Magidor和Väänänen[11]的类似研究,其中Gödel的可构造集的全域L受到类似的方差。增强二阶可定义性允许模型的定义可能与域中原始的Kleene层次结构一致,也可能不一致。用博弈量词扩展逻辑,并假设强无穷公理,得到了最小正确的分析模型。从抽象的可定义性概念中可以生成广泛的模型:可以取一个抽象的Spector类并为其提取扩展逻辑。由此得到的结构就是给定可定义性的最小模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信