Antenna's shape optimization and reconstruction by level-set 3D

P. Dubois, C. Dedeban, J. Zolésio
{"title":"Antenna's shape optimization and reconstruction by level-set 3D","authors":"P. Dubois, C. Dedeban, J. Zolésio","doi":"10.1109/APS.2006.1710590","DOIUrl":null,"url":null,"abstract":"The inverse scattering problem in electromagnetic is studied through the minimisation of the functional Jscr = frac12 intthetas(|E-Eid|)2dgamma, where Eoarr is the solution of the classical exterior Maxwell problem, Eoarrid the measure of the electrical ideal field and thetas is a fixed region of the open domain Omega. Considering this inverse problem, we compute the shape derivative of the functional Jscr for a smooth surface using an original min max formulation. After solving the state problems and computing the shape gradient by the integral equation, we introduce the level set optimization method. This method, based on the implicit representation of the boundary of Omega t (where t is the evolution parameter) and the speed method, allows to reconstruct a homogenous surface triangular mesh at each iteration to decrease the value of the functional, notably performing several topological changes. We present here some original case of 3D reconstruction in full illumination and pure underconstrained configuration. We present notably the reconstruction of singular geometry. Finally we apply the techniques on a parabolic antenna and present the optimized diagram","PeriodicalId":6423,"journal":{"name":"2006 IEEE Antennas and Propagation Society International Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2006.1710590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The inverse scattering problem in electromagnetic is studied through the minimisation of the functional Jscr = frac12 intthetas(|E-Eid|)2dgamma, where Eoarr is the solution of the classical exterior Maxwell problem, Eoarrid the measure of the electrical ideal field and thetas is a fixed region of the open domain Omega. Considering this inverse problem, we compute the shape derivative of the functional Jscr for a smooth surface using an original min max formulation. After solving the state problems and computing the shape gradient by the integral equation, we introduce the level set optimization method. This method, based on the implicit representation of the boundary of Omega t (where t is the evolution parameter) and the speed method, allows to reconstruct a homogenous surface triangular mesh at each iteration to decrease the value of the functional, notably performing several topological changes. We present here some original case of 3D reconstruction in full illumination and pure underconstrained configuration. We present notably the reconstruction of singular geometry. Finally we apply the techniques on a parabolic antenna and present the optimized diagram
水平集三维天线形状优化与重构
通过最小化泛函Jscr = frac12 intthetas(|E-Eid|)2dgamma来研究电磁中的逆散射问题,其中Eoarr是经典的外部麦克斯韦问题的解,Eoarrid是理想电场的测量,theta是开放域Omega的一个固定区域。考虑到这一反问题,我们使用原始的最小最大公式计算光滑表面的泛函Jscr的形状导数。在用积分方程求解状态问题和计算形状梯度后,引入水平集优化方法。该方法基于Omega t(其中t为演化参数)边界的隐式表示和速度方法,允许在每次迭代中重建一个均匀的表面三角形网格,以减少泛函的值,特别是执行几个拓扑变化。本文给出了在全光照和纯欠约束条件下三维重建的一些原始案例。我们特别提出了奇异几何的重建。最后将该技术应用于抛物面天线,并给出了优化图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信