I. Filikhin, R. Kezerashvili, V. Suslov, S. Tsiklauri, B. Vlahovic
{"title":"Three-body model for $K(1460)$ resonance","authors":"I. Filikhin, R. Kezerashvili, V. Suslov, S. Tsiklauri, B. Vlahovic","doi":"10.1103/PHYSREVC.102.045805","DOIUrl":null,"url":null,"abstract":"The three-body $KK\\bar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. It is demonstrated that a splitting the mass of the $K(1460)$ resonance takes a place around 1460 MeV according to $K^0K^0{\\bar K}^0$, $K^0K^+K^-$ and $K^+K^0{\\bar K}^0$, $ K^+K^+K^-$ neutral and charged particle configurations, respectively. The calculations are performed with two sets of $KK$ and $K\\bar K$ phenomenological potentials, where the latter interaction is considered the same for the isospin singlet and triplet states. The effect of repulsion of the $KK$ interaction on the mass of the $KK\\bar K$ system is studied and the effect of the mass polarization is evaluated. The first time the Coulomb interaction for description of the $K(1460)$ resonance is considered. The mass splitting in the $K$(1460) resonances is evaluated to be in range of 10 MeV with taking into account the Coulomb force. The three-body model with the $K\\bar K$ potential, which has the different strength of the isospin singlet and triplet parts that are related by the condition of obtaining a quasi-bound three-body state is also considered. Our results are in reasonable agreement with the experimental mass of the $K(1460)$ resonance.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVC.102.045805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The three-body $KK\bar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. It is demonstrated that a splitting the mass of the $K(1460)$ resonance takes a place around 1460 MeV according to $K^0K^0{\bar K}^0$, $K^0K^+K^-$ and $K^+K^0{\bar K}^0$, $ K^+K^+K^-$ neutral and charged particle configurations, respectively. The calculations are performed with two sets of $KK$ and $K\bar K$ phenomenological potentials, where the latter interaction is considered the same for the isospin singlet and triplet states. The effect of repulsion of the $KK$ interaction on the mass of the $KK\bar K$ system is studied and the effect of the mass polarization is evaluated. The first time the Coulomb interaction for description of the $K(1460)$ resonance is considered. The mass splitting in the $K$(1460) resonances is evaluated to be in range of 10 MeV with taking into account the Coulomb force. The three-body model with the $K\bar K$ potential, which has the different strength of the isospin singlet and triplet parts that are related by the condition of obtaining a quasi-bound three-body state is also considered. Our results are in reasonable agreement with the experimental mass of the $K(1460)$ resonance.