An extremum problem for a linear integro-differential system describing creeping flows of a viscoelastic fluid

M. A. Artemov, E. Baranovskii
{"title":"An extremum problem for a linear integro-differential system describing creeping flows of a viscoelastic fluid","authors":"M. A. Artemov, E. Baranovskii","doi":"10.17804/2410-9908.2021.2.052-063","DOIUrl":null,"url":null,"abstract":"We consider an optimal control problem for an integro-differential system (with a quadratic cost functional) modeling a three-dimensional creeping flow of an incompressible viscoelastic fluid in a bounded domain with impermeable solid walls. The fluid flow is controlled by the time-dependent external force. The concept of the control operator is proposed. We prove a theorem on the existence of a unique optimal control under the assumption that the set of admissible controls is convex and that it is closed in a suitable function space. Moreover, we obtain a variational ine-quality for the optimal control. The proof of this theorem is based on the application of the Faedo–Galerkin approximation scheme taking into account energy estimates of approximate solutions and using the lemma on the existence and uniqueness of the metric projection of a point onto a closed convex set in a real Hilbert space.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2021.2.052-063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an optimal control problem for an integro-differential system (with a quadratic cost functional) modeling a three-dimensional creeping flow of an incompressible viscoelastic fluid in a bounded domain with impermeable solid walls. The fluid flow is controlled by the time-dependent external force. The concept of the control operator is proposed. We prove a theorem on the existence of a unique optimal control under the assumption that the set of admissible controls is convex and that it is closed in a suitable function space. Moreover, we obtain a variational ine-quality for the optimal control. The proof of this theorem is based on the application of the Faedo–Galerkin approximation scheme taking into account energy estimates of approximate solutions and using the lemma on the existence and uniqueness of the metric projection of a point onto a closed convex set in a real Hilbert space.
描述粘弹性流体蠕变流动的线性积分-微分系统的极值问题
我们考虑了一个最优控制问题的积分-微分系统(具有二次代价函数),该系统模拟了不可压缩粘弹性流体在具有不渗透固体壁的有界区域内的三维蠕动流动。流体的流动受随时间变化的外力控制。提出了控制算子的概念。在允许控制集是凸的并且在合适的函数空间中是闭的前提下,证明了唯一最优控制的存在性定理。此外,我们还得到了最优控制的变分质量。该定理的证明基于考虑近似解的能量估计的Faedo-Galerkin近似格式的应用,并利用实Hilbert空间中点在闭凸集上的度量投影的存在唯一性引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信