Non-classical polynomials and the inverse theorem

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Berger, A. Sah, Mehtaab Sawhney, Jonathan Tidor
{"title":"Non-classical polynomials and the inverse theorem","authors":"A. Berger, A. Sah, Mehtaab Sawhney, Jonathan Tidor","doi":"10.1017/S0305004121000682","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we characterize when non-classical polynomials are necessary in the inverse theorem for the Gowers \n$U^k$\n -norm. We give a brief deduction of the fact that a bounded function on \n$\\mathbb F_p^n$\n with large \n$U^k$\n -norm must correlate with a classical polynomial when \n$k\\le p+1$\n . To the best of our knowledge, this result is new for \n$k=p+1$\n (when \n$p>2$\n ). We then prove that non-classical polynomials are necessary in the inverse theorem for the Gowers \n$U^k$\n -norm over \n$\\mathbb F_p^n$\n for all \n$k\\ge p+2$\n , completely characterising when classical polynomials suffice.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"83 1","pages":"525 - 537"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004121000682","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper we characterize when non-classical polynomials are necessary in the inverse theorem for the Gowers $U^k$ -norm. We give a brief deduction of the fact that a bounded function on $\mathbb F_p^n$ with large $U^k$ -norm must correlate with a classical polynomial when $k\le p+1$ . To the best of our knowledge, this result is new for $k=p+1$ (when $p>2$ ). We then prove that non-classical polynomials are necessary in the inverse theorem for the Gowers $U^k$ -norm over $\mathbb F_p^n$ for all $k\ge p+2$ , completely characterising when classical polynomials suffice.
非经典多项式和反定理
摘要本文讨论了Gowers反定理中非经典多项式在什么情况下是必要的 $U^k$ -norm。我们给出了一个有界函数在 $\mathbb F_p^n$ 用大的 $U^k$ -norm必须与经典多项式相关,当 $k\le p+1$ . 据我们所知,这个结果对于 $k=p+1$ (当 $p>2$ ). 然后我们证明了非经典多项式在高尔反定理中是必要的 $U^k$ -norm over $\mathbb F_p^n$ 对所有人 $k\ge p+2$ ,当经典多项式足够时,完全表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信