Hamiltonian memory: An erasable classical bit

Roi Holtzman, Geva Arwas, O. Raz
{"title":"Hamiltonian memory: An erasable classical bit","authors":"Roi Holtzman, Geva Arwas, O. Raz","doi":"10.1103/PHYSREVRESEARCH.3.013232","DOIUrl":null,"url":null,"abstract":"Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.
哈密顿记忆:一种可擦除的经典位
在物理系统上实现的计算基本上受到物理定律的限制。约束计算的物理定律的一个突出例子是兰道尔原理。根据这一原理,抹去一点信息需要在相空间中集中概率,根据刘维尔定理,这在纯哈密顿动力学中是不可能的。因此,它需要耗散动力学,每擦除一个比特的散热至少为$k_BT\log 2$。通过一个具体的例子,我们证明了当动力学被限制在一个单一的能量壳层时,可以使用哈密顿动力学将概率集中在这个壳层上,从而实现一个不需要热力学代价的可擦除位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信