Faster space-efficient algorithms for subset sum and k-sum

N. Bansal, S. Garg, Jesper Nederlof, Nikhil Vyas
{"title":"Faster space-efficient algorithms for subset sum and k-sum","authors":"N. Bansal, S. Garg, Jesper Nederlof, Nikhil Vyas","doi":"10.1145/3055399.3055467","DOIUrl":null,"url":null,"abstract":"We present randomized algorithms that solve Subset Sum and Knapsack instances with n items in O*(20.86n) time, where the O*(·) notation suppresses factors polynomial in the input size, and polynomial space, assuming random read-only access to exponentially many random bits. These results can be extended to solve Binary Linear Programming on n variables with few constraints in a similar running time. We also show that for any constant k≥ 2, random instances of k-Sum can be solved using O(nk-0.5(n)) time and O(logn) space, without the assumption of random access to random bits. Underlying these results is an algorithm that determines whether two given lists of length n with integers bounded by a polynomial in n share a common value. Assuming random read-only access to random bits, we show that this problem can be solved using O(logn) space significantly faster than the trivial O(n2) time algorithm if no value occurs too often in the same list.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We present randomized algorithms that solve Subset Sum and Knapsack instances with n items in O*(20.86n) time, where the O*(·) notation suppresses factors polynomial in the input size, and polynomial space, assuming random read-only access to exponentially many random bits. These results can be extended to solve Binary Linear Programming on n variables with few constraints in a similar running time. We also show that for any constant k≥ 2, random instances of k-Sum can be solved using O(nk-0.5(n)) time and O(logn) space, without the assumption of random access to random bits. Underlying these results is an algorithm that determines whether two given lists of length n with integers bounded by a polynomial in n share a common value. Assuming random read-only access to random bits, we show that this problem can be solved using O(logn) space significantly faster than the trivial O(n2) time algorithm if no value occurs too often in the same list.
子集和k和的更快的空间效率算法
我们提出了在O*(20.86n)时间内求解n个项目的子集和背包实例的随机算法,其中O*(·)符号抑制了输入大小和多项式空间中的多项式因子,假设随机只读访问指数级多的随机位。这些结果可以推广到在相似的运行时间内求解约束较少的n变量二元线性规划问题。我们还证明了对于任意常数k≥2,可以使用O(nk-0.5(n))时间和O(logn)空间求解k- sum的随机实例,而无需假设随机访问随机位。这些结果的基础是一个算法,该算法确定两个给定的长度为n的整数列表是否共享一个公共值。假设对随机位的随机只读访问,我们证明,如果同一个列表中没有经常出现的值,那么可以使用O(logn)空间比平凡的O(n2)时间算法更快地解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信