MACHINE-LEARNING-ENABLED RECOVERY OF PRIOR INFORMATION FROM EXPERIMENTAL BREAST MICROWAVE IMAGING DATA

Keeley Edwards, J. Lovetri, C. Gilmore, I. Jeffrey
{"title":"MACHINE-LEARNING-ENABLED RECOVERY OF PRIOR INFORMATION FROM EXPERIMENTAL BREAST MICROWAVE IMAGING DATA","authors":"Keeley Edwards, J. Lovetri, C. Gilmore, I. Jeffrey","doi":"10.2528/pier22051601","DOIUrl":null,"url":null,"abstract":"|We demonstrate the recovery of simple geometric and permittivity information of breast models in an experimental microwave breast imaging system using a synthetically trained machine learning work(cid:13)ow. The recovered information consists of simple models of adipose and (cid:12)broglandular regions. The machine learning model is trained on a labelled synthetic dataset constructed over a range of possible adipose and (cid:12)broglandular regions and the trained neural network predicts the geometry and average permittivty of the adipose and (cid:12)broglandular regions from calibrated experimental data. The proposed work(cid:13)ow is tested on two different experimental models of the human breast. The (cid:12)rst model is comprised of two simple, symmetric phantoms representing the adipose and (cid:12)broglandular regions of the breast that match the model used to train the neural network. The second, more realistic model replaces the symmetric (cid:12)broglandular phantom with an irregularly shaped, MRI-derived (cid:12)broglandular phantom. We demonstrate the ability of the machine learning work(cid:13)ow to accurately recover geometry and complex valued average permittivity of the (cid:12)broglandular region for the simple case, and to predict a symmetric convex hull that is a reasonable approximation to the proportions of the MRI-derived (cid:12)broglandular phantom.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier22051601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

|We demonstrate the recovery of simple geometric and permittivity information of breast models in an experimental microwave breast imaging system using a synthetically trained machine learning work(cid:13)ow. The recovered information consists of simple models of adipose and (cid:12)broglandular regions. The machine learning model is trained on a labelled synthetic dataset constructed over a range of possible adipose and (cid:12)broglandular regions and the trained neural network predicts the geometry and average permittivty of the adipose and (cid:12)broglandular regions from calibrated experimental data. The proposed work(cid:13)ow is tested on two different experimental models of the human breast. The (cid:12)rst model is comprised of two simple, symmetric phantoms representing the adipose and (cid:12)broglandular regions of the breast that match the model used to train the neural network. The second, more realistic model replaces the symmetric (cid:12)broglandular phantom with an irregularly shaped, MRI-derived (cid:12)broglandular phantom. We demonstrate the ability of the machine learning work(cid:13)ow to accurately recover geometry and complex valued average permittivity of the (cid:12)broglandular region for the simple case, and to predict a symmetric convex hull that is a reasonable approximation to the proportions of the MRI-derived (cid:12)broglandular phantom.
从实验性乳房微波成像数据中恢复先验信息的机器学习
我们展示了在实验微波乳房成像系统中使用综合训练的机器学习工作(cid:13)来恢复乳房模型的简单几何和介电常数信息。恢复的信息包括脂肪和腺区(cid:12)的简单模型。机器学习模型在一个标记的合成数据集上进行训练,该数据集是在一系列可能的脂肪和(cid:12)腺区域上构建的,训练后的神经网络根据校准的实验数据预测脂肪和(cid:12)腺区域的几何形状和平均介电常数。所提出的工作(cid:13)目前在两种不同的人类乳房实验模型上进行了测试。(cid:12)第一个模型由两个简单的对称模型组成,代表乳房的脂肪和(cid:12)乳腺区域,它们与用于训练神经网络的模型相匹配。第二种更真实的模型用不规则形状的、mri衍生的(cid:12)腺影代替了对称的腺影(cid:12)。我们展示了机器学习工作(cid:13)的能力,可以准确地恢复简单情况下(cid:12)腺区的几何形状和复值平均介电常数,并预测对称凸包,这是mri衍生(cid:12)腺影比例的合理近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信