Sparse Dynamic 3D Reconstruction from Unsynchronized Videos

Enliang Zheng, Dinghuang Ji, Enrique Dunn, Jan-Michael Frahm
{"title":"Sparse Dynamic 3D Reconstruction from Unsynchronized Videos","authors":"Enliang Zheng, Dinghuang Ji, Enrique Dunn, Jan-Michael Frahm","doi":"10.1109/ICCV.2015.504","DOIUrl":null,"url":null,"abstract":"We target the sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning. Moreover, we define our dictionary as the temporally varying 3D structure, while we define local sequencing information in terms of the sparse coefficients describing a locally linear 3D structural interpolation. Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. Experimental results demonstrate the effectiveness of our approach in both synthetic data and captured imagery.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"63 1","pages":"4435-4443"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We target the sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning. Moreover, we define our dictionary as the temporally varying 3D structure, while we define local sequencing information in terms of the sparse coefficients describing a locally linear 3D structural interpolation. Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. Experimental results demonstrate the effectiveness of our approach in both synthetic data and captured imagery.
从非同步视频稀疏动态3D重建
我们的目标是对多个时间重叠未知的不同步摄像机观测到的动态物体进行稀疏三维重建。为此,我们开发了一个框架来恢复未知结构,而不需要跨视频序列的测序信息。我们提出的压缩感知框架将三维结构的估计作为字典学习问题。此外,我们将字典定义为随时间变化的三维结构,而我们将局部排序信息定义为描述局部线性三维结构插值的稀疏系数。我们的公式优化了一个双凸成本函数,该函数利用压缩感知公式,并加强了视频流之间的结构依赖一致性,以及来自常见视频源的估计的运动平滑性。实验结果证明了该方法在合成数据和捕获图像上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信