The Ramsey theory of Henson graphs

IF 0.9 1区 数学 Q1 LOGIC
Natasha Dobrinen
{"title":"The Ramsey theory of Henson graphs","authors":"Natasha Dobrinen","doi":"10.1142/s0219061322500180","DOIUrl":null,"url":null,"abstract":"For $k\\ge 3$, the Henson graph $\\mathcal{H}_k$ is the analogue of the Rado graph in which $k$-cliques are forbidden. Building on the author's result for $\\mathcal{H}_3$, we prove that for each $k\\ge 4$, $\\mathcal{H}_k$ has finite big Ramsey degrees: To each finite $k$-clique-free graph $G$, there corresponds an integer $T(G,\\mathcal{H}_k)$ such that for any coloring of the copies of $G$ in $\\mathcal{H}_k$ into finitely many colors, there is a subgraph of $\\mathcal{H}_k$, again isomorphic to $\\mathcal{H}_k$, in which the coloring takes no more than $T(G, \\mathcal{H}_k)$ colors. Prior to this article, the Ramsey theory of $\\mathcal{H}_k$ for $k\\ge 4$ had only been resolved for vertex colorings by El-Zahar and Sauer in 1989. We develop a unified framework for coding copies of $\\mathcal{H}_k$ into a new class of trees, called strong $\\mathcal{H}_k$-coding trees, and prove Ramsey theorems for these trees, forming a family of Halpern-\\Lauchli\\ and Milliken-style theorems which are applied to deduce finite big Ramsey degrees. The approach here streamlines the one in \\cite{DobrinenH_317} for $\\mathcal{H}_3$ and provides a general methodology opening further study of big Ramsey degrees for homogeneous structures with forbidden configurations. The results have bearing on topological dynamics via work of Kechris, Pestov, and Todorcevic and recent work of Zucker.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"162 1","pages":"2250018:1-2250018:88"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500180","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 16

Abstract

For $k\ge 3$, the Henson graph $\mathcal{H}_k$ is the analogue of the Rado graph in which $k$-cliques are forbidden. Building on the author's result for $\mathcal{H}_3$, we prove that for each $k\ge 4$, $\mathcal{H}_k$ has finite big Ramsey degrees: To each finite $k$-clique-free graph $G$, there corresponds an integer $T(G,\mathcal{H}_k)$ such that for any coloring of the copies of $G$ in $\mathcal{H}_k$ into finitely many colors, there is a subgraph of $\mathcal{H}_k$, again isomorphic to $\mathcal{H}_k$, in which the coloring takes no more than $T(G, \mathcal{H}_k)$ colors. Prior to this article, the Ramsey theory of $\mathcal{H}_k$ for $k\ge 4$ had only been resolved for vertex colorings by El-Zahar and Sauer in 1989. We develop a unified framework for coding copies of $\mathcal{H}_k$ into a new class of trees, called strong $\mathcal{H}_k$-coding trees, and prove Ramsey theorems for these trees, forming a family of Halpern-\Lauchli\ and Milliken-style theorems which are applied to deduce finite big Ramsey degrees. The approach here streamlines the one in \cite{DobrinenH_317} for $\mathcal{H}_3$ and provides a general methodology opening further study of big Ramsey degrees for homogeneous structures with forbidden configurations. The results have bearing on topological dynamics via work of Kechris, Pestov, and Todorcevic and recent work of Zucker.
汉森图的拉姆齐理论
对于$k\ge 3$, Henson图$\mathcal{H}_k$是Rado图的模拟,其中$k$ -团是禁止的。基于作者对$\mathcal{H}_3$的结果,我们证明了对于每个$k\ge 4$, $\mathcal{H}_k$都有有限大的拉姆齐度:对于每个有限的$k$ -无团团图$G$,对应一个整数$T(G,\mathcal{H}_k)$,使得对于$\mathcal{H}_k$中$G$的副本的任何着色为有限多种颜色,都有一个$\mathcal{H}_k$的子图,同样同构于$\mathcal{H}_k$,其中着色不超过$T(G, \mathcal{H}_k)$种颜色。在这篇文章之前,对于$k\ge 4$的$\mathcal{H}_k$的Ramsey理论只在1989年由El-Zahar和Sauer解决了顶点着色问题。我们开发了一个统一的框架,将$\mathcal{H}_k$的副本编码为一类新的树,称为强$\mathcal{H}_k$ -编码树,并证明了这些树的Ramsey定理,形成了Halpern- \Lauchli和milliken式定理,它们用于推导有限大Ramsey度。这里的方法简化了\cite{DobrinenH_317}中$\mathcal{H}_3$的方法,并提供了一种通用的方法,为具有禁止配置的均匀结构的大拉姆齐度的进一步研究打开了大门。通过Kechris, Pestov和Todorcevic的工作以及Zucker最近的工作,这些结果与拓扑动力学有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信