Method for reducing time of backup power supply in power supply systems with motor load

S. Derkachev
{"title":"Method for reducing time of backup power supply in power supply systems with motor load","authors":"S. Derkachev","doi":"10.17588/2072-2672.2023.2.044-050","DOIUrl":null,"url":null,"abstract":"Nowadays fast-acting automatic transfer equipment is commonly applied in power supply systems with a motor load since it ensures uninterrupted power supply of critical consumers. However, their application requires the use of high-speed breakers. The implementation of a “high-speed” transfer to a backup power source when using vacuum switches may not be possible due to the long turn-on and turn-off times. Therefore, the purpose of the paper is relevant. The aim of the paper is to study the possibility to reduce the backup power supply time by improving the algorithm to control the vacuum switches of the main and backup power sources in the modes “high-speed” switching by the fast-acting automatic device in case of short circuits in the external power supply network. To achieve this purpose, computer modeling methods are used. They are based on mathematical models of electrical network elements written using systems of differential equations. The authors have defined the regularities of the transient processes in synchronous and induction motors when switching to a backup power source by the fast-acting automatic device in case of short circuits in the external power supply network. It makes possible to set the limit value of the mismatch angle between the residual voltage vectors on the section of the main power source and the voltage of the backup power source, at which the level of the self-starting current does not exceed the values of the starting currents. Also, it makes possible to develop an algorithm to control breakers. The proposed algorithm is based on changing the operation order of the switches of the main and backup power sources. The obtained results show that implementation of the proposed algorithm to control breakers of the main and backup power sources in fast-acting automatic devices in case of short circuits in the external power supply network of the main power source makes it possible to reduce the backup power supply time and decrease the level of self-starting currents that do not exceed the level of starting currents of electric motors without use of high-speed switches.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik IGEU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17588/2072-2672.2023.2.044-050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays fast-acting automatic transfer equipment is commonly applied in power supply systems with a motor load since it ensures uninterrupted power supply of critical consumers. However, their application requires the use of high-speed breakers. The implementation of a “high-speed” transfer to a backup power source when using vacuum switches may not be possible due to the long turn-on and turn-off times. Therefore, the purpose of the paper is relevant. The aim of the paper is to study the possibility to reduce the backup power supply time by improving the algorithm to control the vacuum switches of the main and backup power sources in the modes “high-speed” switching by the fast-acting automatic device in case of short circuits in the external power supply network. To achieve this purpose, computer modeling methods are used. They are based on mathematical models of electrical network elements written using systems of differential equations. The authors have defined the regularities of the transient processes in synchronous and induction motors when switching to a backup power source by the fast-acting automatic device in case of short circuits in the external power supply network. It makes possible to set the limit value of the mismatch angle between the residual voltage vectors on the section of the main power source and the voltage of the backup power source, at which the level of the self-starting current does not exceed the values of the starting currents. Also, it makes possible to develop an algorithm to control breakers. The proposed algorithm is based on changing the operation order of the switches of the main and backup power sources. The obtained results show that implementation of the proposed algorithm to control breakers of the main and backup power sources in fast-acting automatic devices in case of short circuits in the external power supply network of the main power source makes it possible to reduce the backup power supply time and decrease the level of self-starting currents that do not exceed the level of starting currents of electric motors without use of high-speed switches.
有电机负载的供电系统中缩短备用电源时间的方法
目前,快速自动转换设备普遍应用于电机负载的供电系统中,因为它可以确保关键用户的不间断供电。然而,它们的应用需要使用高速断路器。当使用真空开关时,由于开启和关闭时间长,可能不可能实现“高速”传输到备用电源。因此,本文的目的是相关的。本文的目的是研究在外部供电网络短路的情况下,通过改进算法控制主备电源的真空开关在“高速”切换模式下由速动自动装置控制,从而减少备用电源时间的可能性。为了达到这一目的,使用了计算机建模方法。它们基于使用微分方程系统编写的电子网络元件的数学模型。定义了在外部供电网络短路情况下,同步电动机和感应电动机由快速自动装置切换到备用电源时的暂态过程规律。可以设置主电源段上剩余电压矢量与备用电源电压失配角的极限值,使自启动电流的电平不超过启动电流的值。同时,它也使得开发一种控制断路器的算法成为可能。该算法基于改变主备电源开关的操作顺序。结果表明,在主电源外部供电网络短路的情况下,采用该算法控制快速动作自动装置的主备电源开断,可以在不使用高速开关的情况下减少备用电源供电时间,降低不超过电动机启动电流水平的自启动电流水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信