Deep Labeling of fMRI Brain Networks Using Cloud Based Processing

Sejal Ghate, Alberto Santamaría-Pang, I. Tarapov, H. Sair, Craig K. Jones
{"title":"Deep Labeling of fMRI Brain Networks Using Cloud Based Processing","authors":"Sejal Ghate, Alberto Santamaría-Pang, I. Tarapov, H. Sair, Craig K. Jones","doi":"10.48550/arXiv.2209.08200","DOIUrl":null,"url":null,"abstract":"Resting state fMRI is an imaging modality which reveals brain activity localization through signal changes, in what is known as Resting State Networks (RSNs). This technique is gaining popularity in neurosurgical pre-planning to visualize the functional regions and assess regional activity. Labeling of rs-fMRI networks require subject-matter expertise and is time consuming, creating a need for an automated classification algorithm. While the impact of AI in medical diagnosis has shown great progress; deploying and maintaining these in a clinical setting is an unmet need. We propose an end-to-end reproducible pipeline which incorporates image processing of rs-fMRI in a cloud-based workflow while using deep learning to automate the classification of RSNs. We have architected a reproducible Azure Machine Learning cloud-based medical imaging concept pipeline for fMRI analysis integrating the popular FMRIB Software Library (FSL) toolkit. To demonstrate a clinical application using a large dataset, we compare three neural network architectures for classification of deeper RSNs derived from processed rs-fMRI. The three algorithms are: an MLP, a 2D projection-based CNN, and a fully 3D CNN classification networks. Each of the net-works was trained on the rs-fMRI back-projected independent components giving>98% accuracy for each classification method.","PeriodicalId":91444,"journal":{"name":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","volume":"84 1","pages":"275-283"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resting state fMRI is an imaging modality which reveals brain activity localization through signal changes, in what is known as Resting State Networks (RSNs). This technique is gaining popularity in neurosurgical pre-planning to visualize the functional regions and assess regional activity. Labeling of rs-fMRI networks require subject-matter expertise and is time consuming, creating a need for an automated classification algorithm. While the impact of AI in medical diagnosis has shown great progress; deploying and maintaining these in a clinical setting is an unmet need. We propose an end-to-end reproducible pipeline which incorporates image processing of rs-fMRI in a cloud-based workflow while using deep learning to automate the classification of RSNs. We have architected a reproducible Azure Machine Learning cloud-based medical imaging concept pipeline for fMRI analysis integrating the popular FMRIB Software Library (FSL) toolkit. To demonstrate a clinical application using a large dataset, we compare three neural network architectures for classification of deeper RSNs derived from processed rs-fMRI. The three algorithms are: an MLP, a 2D projection-based CNN, and a fully 3D CNN classification networks. Each of the net-works was trained on the rs-fMRI back-projected independent components giving>98% accuracy for each classification method.
基于云处理的fMRI脑网络深度标记
静息状态fMRI是一种通过信号变化揭示大脑活动定位的成像方式,即所谓的静息状态网络(RSNs)。这项技术在神经外科术前规划中越来越受欢迎,用于可视化功能区域和评估区域活动。标记rs-fMRI网络需要主题专业知识,并且耗时,因此需要自动分类算法。虽然人工智能在医疗诊断方面的影响取得了很大进展;在临床环境中部署和维护这些设备是一个未满足的需求。我们提出了一个端到端的可重复管道,该管道将rs-fMRI的图像处理整合到基于云的工作流中,同时使用深度学习来自动分类rsn。我们已经为fMRI分析构建了一个可重复的基于Azure机器学习云的医学成像概念管道,集成了流行的FMRIB软件库(FSL)工具包。为了演示使用大型数据集的临床应用,我们比较了三种神经网络架构,用于分类来自处理后的rs-fMRI的更深rsn。这三种算法分别是:MLP、基于2D投影的CNN和全3D CNN分类网络。每个网络都在rs-fMRI反向投影的独立分量上进行训练,每种分类方法的准确率都大于98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信