R. Srinivasa, M. Aditya, R. Karthik, CH. Manisai, S. Tharun, Girija Sravani
{"title":"Design and performance analysis of full adder using 6-T XOR-XNOR cell","authors":"R. Srinivasa, M. Aditya, R. Karthik, CH. Manisai, S. Tharun, Girija Sravani","doi":"10.2298/fuee2202187r","DOIUrl":null,"url":null,"abstract":"In this paper, the design and simulation of a high-speed, low power 6-T XOR-XNOR circuit is carried out. Also, the design and simulation of 1-bit hybrid full adder (consisting of 16 transistors) using XOR-XNOR circuit, sum, and carry, is performed to improve the area and speed performance. Its performance is being compared with full adder designs with 20 and 18 transistors, respectively. The performance of the proposed circuits is measured by simulating them in Microwind tool using 180 and 90nm CMOS technology. The performance of the proposed circuit is measured in terms of power, delay, and PDP (Power Delay Product).","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"159 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2202187r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the design and simulation of a high-speed, low power 6-T XOR-XNOR circuit is carried out. Also, the design and simulation of 1-bit hybrid full adder (consisting of 16 transistors) using XOR-XNOR circuit, sum, and carry, is performed to improve the area and speed performance. Its performance is being compared with full adder designs with 20 and 18 transistors, respectively. The performance of the proposed circuits is measured by simulating them in Microwind tool using 180 and 90nm CMOS technology. The performance of the proposed circuit is measured in terms of power, delay, and PDP (Power Delay Product).