Intelligent Digital Recognition System Based on Vernier Caliper

Hui Sun, Feng Shan, Xiaoyu Tang, Weiwei Shi, Xiaowei Wang, Xiaofeng Li, Yuan-Chin Cheng, Haiwei Zhang
{"title":"Intelligent Digital Recognition System Based on Vernier Caliper","authors":"Hui Sun, Feng Shan, Xiaoyu Tang, Weiwei Shi, Xiaowei Wang, Xiaofeng Li, Yuan-Chin Cheng, Haiwei Zhang","doi":"10.17706/IJCCE.2021.10.1.1-8","DOIUrl":null,"url":null,"abstract":"The detection and recognition of information in natural scenes has always been a difficult problem in computer vision. Digital instrument character recognition is one of the more representative and valuable things. In recent years, there is a lot of research work on this problem, but the solutions rely on string location, character segmentation and other preprocessing processes, the results of these preprocessing processes directly affect the final character recognition results. In contrast, the character recognition method of digital instrument based on convolution neural network (CNN) omits the complex preprocessing process through graph to graph prediction, and the character recognition result is obtaind directly. And has a strong generalization ability, can identify multiple types of instruments. At the same time, through the weighted fusion of muti-scale and multi-level features in the CNN, a better ability of feature extraction and information integration is obtained. The experimental results show that the method can directly and accurately recognize the characters in the Vernier caliper.","PeriodicalId":23787,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/IJCCE.2021.10.1.1-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and recognition of information in natural scenes has always been a difficult problem in computer vision. Digital instrument character recognition is one of the more representative and valuable things. In recent years, there is a lot of research work on this problem, but the solutions rely on string location, character segmentation and other preprocessing processes, the results of these preprocessing processes directly affect the final character recognition results. In contrast, the character recognition method of digital instrument based on convolution neural network (CNN) omits the complex preprocessing process through graph to graph prediction, and the character recognition result is obtaind directly. And has a strong generalization ability, can identify multiple types of instruments. At the same time, through the weighted fusion of muti-scale and multi-level features in the CNN, a better ability of feature extraction and information integration is obtained. The experimental results show that the method can directly and accurately recognize the characters in the Vernier caliper.
基于游标卡尺的智能数字识别系统
自然场景信息的检测与识别一直是计算机视觉领域的一个难题。数字仪表字符识别是其中比较有代表性和价值的东西。近年来,针对这一问题进行了大量的研究工作,但解决方案依赖于字符串定位、字符分割等预处理过程,这些预处理过程的结果直接影响到最终的字符识别结果。相比之下,基于卷积神经网络(CNN)的数字仪表字符识别方法省去了通过图对图预测的复杂预处理过程,直接获得字符识别结果。并具有较强的泛化能力,能识别多种类型的仪器。同时,通过对CNN中多尺度、多层次特征的加权融合,获得了更好的特征提取和信息整合能力。实验结果表明,该方法可以直接准确地识别游标卡尺上的字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信