Deep learning pipeline for brain MRI acquisition type classification

Hossein Mohammadian Foroushani, P. LaMontagne, L. Wallace, J. Gurney, D. Marcus
{"title":"Deep learning pipeline for brain MRI acquisition type classification","authors":"Hossein Mohammadian Foroushani, P. LaMontagne, L. Wallace, J. Gurney, D. Marcus","doi":"10.1117/12.2581857","DOIUrl":null,"url":null,"abstract":"We have developed an effective deep learning pipeline to classify brain magnetic resonance imaging scans automatically into 12 subcategories. The classification is performed by a meta classifier which receives level one predictions from Microsoft's Residual Networks (ResNet), Google’s Neural Architecture Search Network (NASNet) and a text-based classifier on DICOM header series description and combine them to get final classification. The overall classifier was trained, validated and tested on 2750 MRI images from multicenter projects. The classifier was packaged using Docker containerization technology and deployed on a local XNAT instance and tested on 3000 independent imaging sessions with 98.5% accuracy.","PeriodicalId":57954,"journal":{"name":"影像研究与医学应用","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"影像研究与医学应用","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2581857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed an effective deep learning pipeline to classify brain magnetic resonance imaging scans automatically into 12 subcategories. The classification is performed by a meta classifier which receives level one predictions from Microsoft's Residual Networks (ResNet), Google’s Neural Architecture Search Network (NASNet) and a text-based classifier on DICOM header series description and combine them to get final classification. The overall classifier was trained, validated and tested on 2750 MRI images from multicenter projects. The classifier was packaged using Docker containerization technology and deployed on a local XNAT instance and tested on 3000 independent imaging sessions with 98.5% accuracy.
脑MRI采集类型分类的深度学习管道
我们已经开发了一个有效的深度学习管道,将脑磁共振成像扫描自动分为12个子类别。分类由一个元分类器执行,该分类器接收来自微软残余网络(ResNet)、谷歌神经架构搜索网络(NASNet)和基于DICOM标头系列描述的文本分类器的一级预测,并将它们组合起来得到最终分类。总体分类器在2750张来自多中心项目的MRI图像上进行了训练、验证和测试。分类器使用Docker容器化技术进行打包,部署在本地XNAT实例上,并在3000个独立的成像会话上进行测试,准确率为98.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17946
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信