Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices

IF 0.3 Q4 MATHEMATICS
P. Lebedev, O. Kuvshinov
{"title":"Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices","authors":"P. Lebedev, O. Kuvshinov","doi":"10.35634/2226-3594-2023-61-05","DOIUrl":null,"url":null,"abstract":"The problem of covering a compact planar set $M$ with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set $M$. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of $M$.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"76 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2023-61-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of covering a compact planar set $M$ with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set $M$. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of $M$.
在正则格类中构造带盘平面图形次优覆盖的算法
研究了紧平面集合$M$被一组同盘覆盖的问题。我们假设这些圆的中心属于某个晶格。一种情况下的最优性准则是覆盖的元素数的最小值,另一种情况下的最优性准则是覆盖的元素的并集与集合$M$的Hausdorff偏差的最小值。为了解决这些问题,可以对晶格进行以原点为中心的平行转移和旋转变换。证明了关于圆集合的充分条件的陈述,这些陈述提供了问题的解。提出了基于最小化两个平面紧致之间的豪斯多夫偏差的数值算法。给出了若干实例的解法,适用于不同的$M$数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信