{"title":"Sparse zonal harmonic factorization for efficient SH rotation","authors":"D. Nowrouzezahrai, P. Simari, E. Fiume","doi":"10.1145/2167076.2167081","DOIUrl":null,"url":null,"abstract":"We present a sparse analytic representation for spherical functions, including those expressed in a Spherical Harmonic (SH) expansion, that is amenable to fast and accurate rotation on the GPU. Exploiting the fact that each band-l SH basis function can be expressed as a weighted sum of 2l + 1 rotated band-l Zonal Harmonic (ZH) lobes, we develop a factorization that significantly reduces this number. We investigate approaches for promoting sparsity in the change-of-basis matrix, and also introduce lobe sharing to reduce the total number of unique lobe directions used for an order-N expansion from N2 to 2N-1. Our representation does not introduce approximation error, is suitable for any type of spherical function (e.g., lighting or transfer), and requires no offline fitting procedure; only a (sparse) matrix multiplication is required to map to/from SH. We provide code for our rotation algorithms, and apply them to several real-time rendering applications.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"84 1","pages":"23:1-23:9"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2167076.2167081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
We present a sparse analytic representation for spherical functions, including those expressed in a Spherical Harmonic (SH) expansion, that is amenable to fast and accurate rotation on the GPU. Exploiting the fact that each band-l SH basis function can be expressed as a weighted sum of 2l + 1 rotated band-l Zonal Harmonic (ZH) lobes, we develop a factorization that significantly reduces this number. We investigate approaches for promoting sparsity in the change-of-basis matrix, and also introduce lobe sharing to reduce the total number of unique lobe directions used for an order-N expansion from N2 to 2N-1. Our representation does not introduce approximation error, is suitable for any type of spherical function (e.g., lighting or transfer), and requires no offline fitting procedure; only a (sparse) matrix multiplication is required to map to/from SH. We provide code for our rotation algorithms, and apply them to several real-time rendering applications.