Sparse zonal harmonic factorization for efficient SH rotation

D. Nowrouzezahrai, P. Simari, E. Fiume
{"title":"Sparse zonal harmonic factorization for efficient SH rotation","authors":"D. Nowrouzezahrai, P. Simari, E. Fiume","doi":"10.1145/2167076.2167081","DOIUrl":null,"url":null,"abstract":"We present a sparse analytic representation for spherical functions, including those expressed in a Spherical Harmonic (SH) expansion, that is amenable to fast and accurate rotation on the GPU. Exploiting the fact that each band-l SH basis function can be expressed as a weighted sum of 2l + 1 rotated band-l Zonal Harmonic (ZH) lobes, we develop a factorization that significantly reduces this number. We investigate approaches for promoting sparsity in the change-of-basis matrix, and also introduce lobe sharing to reduce the total number of unique lobe directions used for an order-N expansion from N2 to 2N-1. Our representation does not introduce approximation error, is suitable for any type of spherical function (e.g., lighting or transfer), and requires no offline fitting procedure; only a (sparse) matrix multiplication is required to map to/from SH. We provide code for our rotation algorithms, and apply them to several real-time rendering applications.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"84 1","pages":"23:1-23:9"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2167076.2167081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We present a sparse analytic representation for spherical functions, including those expressed in a Spherical Harmonic (SH) expansion, that is amenable to fast and accurate rotation on the GPU. Exploiting the fact that each band-l SH basis function can be expressed as a weighted sum of 2l + 1 rotated band-l Zonal Harmonic (ZH) lobes, we develop a factorization that significantly reduces this number. We investigate approaches for promoting sparsity in the change-of-basis matrix, and also introduce lobe sharing to reduce the total number of unique lobe directions used for an order-N expansion from N2 to 2N-1. Our representation does not introduce approximation error, is suitable for any type of spherical function (e.g., lighting or transfer), and requires no offline fitting procedure; only a (sparse) matrix multiplication is required to map to/from SH. We provide code for our rotation algorithms, and apply them to several real-time rendering applications.
高效SH旋转的稀疏分区调和分解
我们提出了球面函数的稀疏解析表示,包括球面调和(SH)展开表示的球面函数,它适用于GPU上的快速和精确旋转。利用每个band- 1 SH基函数可以表示为2l + 1个旋转的band- 1带状谐波(ZH)瓣的加权和这一事实,我们开发了一个显著减少这个数字的分解。我们研究了提高基变换矩阵稀疏性的方法,并引入了瓣共享来减少从N2到2N-1的n阶展开所使用的唯一瓣方向的总数。我们的表示不引入近似误差,适用于任何类型的球面函数(例如,照明或转移),并且不需要离线拟合程序;我们提供了旋转算法的代码,并将它们应用于几个实时渲染应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信