Efficacious End User Measures - Part 1: Relative Class Size and End User Problem Domains

E. Eiland, L. Liebrock
{"title":"Efficacious End User Measures - Part 1: Relative Class Size and End User Problem Domains","authors":"E. Eiland, L. Liebrock","doi":"10.1155/2013/427958","DOIUrl":null,"url":null,"abstract":"Biological and medical endeavors are beginning to realize the benefits of artificial intelligence and machine learning. However, classification, prediction, and diagnostic (CPD) errors can cause significant losses, even loss of life. Hence, end users are best served when they have performance information relevant to their needs, this paper's focus. Relative class size (rCS) is commonly recognized as a confounding factor in CPD evaluation. Unfortunately, rCS-invariant measures are not easily mapped to end user conditions. We determine a cause of rCS invariance, joint probability table (JPT) normalization. JPT normalization means that more end user efficacious measures can be used without sacrificing invariance. An important revelation is that without data normalization, the Matthews correlation coefficient (MCC) and information coefficient (IC) are not relative class size invariants; this is a potential source of confusion, as we found not all reports using MCC or IC normalize their data. We derive MCC rCS-invariant expression. JPT normalization can be extended to allow JPT rCS to be set to any desired value (JPT tuning). This makes sensitivity analysis feasible, a benefit to both applied researchers and practitioners (end users). We apply our findings to two published CPD studies to illustrate how end users benefit.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"76 1","pages":"427958:1-427958:22"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/427958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Biological and medical endeavors are beginning to realize the benefits of artificial intelligence and machine learning. However, classification, prediction, and diagnostic (CPD) errors can cause significant losses, even loss of life. Hence, end users are best served when they have performance information relevant to their needs, this paper's focus. Relative class size (rCS) is commonly recognized as a confounding factor in CPD evaluation. Unfortunately, rCS-invariant measures are not easily mapped to end user conditions. We determine a cause of rCS invariance, joint probability table (JPT) normalization. JPT normalization means that more end user efficacious measures can be used without sacrificing invariance. An important revelation is that without data normalization, the Matthews correlation coefficient (MCC) and information coefficient (IC) are not relative class size invariants; this is a potential source of confusion, as we found not all reports using MCC or IC normalize their data. We derive MCC rCS-invariant expression. JPT normalization can be extended to allow JPT rCS to be set to any desired value (JPT tuning). This makes sensitivity analysis feasible, a benefit to both applied researchers and practitioners (end users). We apply our findings to two published CPD studies to illustrate how end users benefit.
有效的最终用户度量-第1部分:相对类大小和最终用户问题域
生物和医学方面的努力开始意识到人工智能和机器学习的好处。然而,分类、预测和诊断(CPD)错误可能导致重大损失,甚至生命损失。因此,当最终用户获得与其需求相关的性能信息时,他们将得到最好的服务,这是本文的重点。相对班级规模(rCS)通常被认为是CPD评估中的一个混淆因素。不幸的是,rcs不变度量不容易映射到最终用户条件。我们确定了rCS不变性的一个原因,联合概率表(JPT)归一化。JPT规范化意味着可以在不牺牲不变性的情况下使用更多终端用户有效的措施。一个重要的启示是,在没有数据归一化的情况下,马修斯相关系数(MCC)和信息系数(IC)不是相对的类大小不变量;这是一个潜在的混淆来源,因为我们发现并非所有使用MCC或IC的报告都将其数据规范化。我们推导了MCC的rcs不变表达式。可以扩展JPT规范化,以允许将JPT rCS设置为任何所需的值(JPT调优)。这使得敏感性分析变得可行,对应用研究人员和从业者(最终用户)都有好处。我们将我们的发现应用于两项已发表的CPD研究,以说明最终用户如何受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信