{"title":"Tight bounds on the expected number of holes in random point sets","authors":"M. Balko, M. Scheucher, P. Valtr","doi":"10.1002/rsa.21088","DOIUrl":null,"url":null,"abstract":"For integers d≥2$$ d\\ge 2 $$ and k≥d+1$$ k\\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\\subseteq {\\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\\ge 2 $$ and k≥d+1$$ k\\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \\Omega \\left({n}^d\\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\\lim}_{n\\to \\infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\\lim}_{n\\to \\infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\\lim}_{n\\to \\infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"61 1","pages":"29 - 51"},"PeriodicalIF":0.9000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21088","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
For integers d≥2$$ d\ge 2 $$ and k≥d+1$$ k\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\subseteq {\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\ge 2 $$ and k≥d+1$$ k\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \Omega \left({n}^d\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\lim}_{n\to \infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.