Chip level signal integrity analysis and crosstalk prediction using artificial neural nets

A. Ilumoka
{"title":"Chip level signal integrity analysis and crosstalk prediction using artificial neural nets","authors":"A. Ilumoka","doi":"10.1109/ISQED.2002.996725","DOIUrl":null,"url":null,"abstract":"Recent ITRS predictions indicate that by the year 2011, the billion transistor monolithic die will be a reality. This clearly poses a challenge to gigascale integrated circuit design with regard to provision of multilevel interconnect wiring for the distribution of power, data and control signals to all parts of a chip. This paper addresses the problem of characterization, modeling and verification of 3D chip level interconnect crosstalk. The novel methodology proposed involves topological decomposition of interconnects into standard cells and the creation of parameterized models of these primitive structures using neural networks. Experimental results from a high performance operational amplifier demonstrates the viability of the approach.","PeriodicalId":20510,"journal":{"name":"Proceedings International Symposium on Quality Electronic Design","volume":"21 1","pages":"175-180"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2002.996725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent ITRS predictions indicate that by the year 2011, the billion transistor monolithic die will be a reality. This clearly poses a challenge to gigascale integrated circuit design with regard to provision of multilevel interconnect wiring for the distribution of power, data and control signals to all parts of a chip. This paper addresses the problem of characterization, modeling and verification of 3D chip level interconnect crosstalk. The novel methodology proposed involves topological decomposition of interconnects into standard cells and the creation of parameterized models of these primitive structures using neural networks. Experimental results from a high performance operational amplifier demonstrates the viability of the approach.
基于人工神经网络的芯片级信号完整性分析与串扰预测
最近的ITRS预测表明,到2011年,十亿晶体管单片芯片将成为现实。这显然对千兆级集成电路设计提出了挑战,因为它需要提供多级互连布线,以便将电源、数据和控制信号分配到芯片的所有部分。本文研究了三维芯片级互连串扰的表征、建模和验证问题。提出的新方法包括将互连拓扑分解为标准单元,并使用神经网络创建这些原始结构的参数化模型。一个高性能运算放大器的实验结果证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信