Study on the fabrication and performance of 3D-Network SiC/Cu composites

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Jiaqi Chang, Qingming Chang, Xiaowei Gong, Ke Li, Siqian Bao, Yawei Li, Xiong Liang
{"title":"Study on the fabrication and performance of 3D-Network SiC/Cu composites","authors":"Jiaqi Chang, Qingming Chang, Xiaowei Gong, Ke Li, Siqian Bao, Yawei Li, Xiong Liang","doi":"10.1080/09276440.2023.2201742","DOIUrl":null,"url":null,"abstract":"ABSTRACT 3D-Network SiC ceramic was prepared using a polymer sponge replica technique with SiC ceramic slurry (77 wt% solid content). The triangular hole defects in 3D-Network SiC ceramic were reduced and the mechanical properties were improved by high-pressure spraying and vacuum infiltration. The 3D-Network SiC/Cu composite material was fabricated by the gravity casting technique, and the interfacial bonding and abrasion resistance of the composites were tested and analyzed. The results show that the compressive strength of high-pressure sprayed 3D-Network SiC ceramic increased slightly from 0.67 Mpa to 0.74 Mpa due to the triangular hole defects left when the polymer sponge was decomposed at high temperatures. The mechanical properties of 3D-Network SiC ceramics that have been vacuum infiltrated in alumina and a mixture composed of alumina and andalusite were greatly improved, and their compressive strength was increased to 1.02Mpa and 1.57Mpa, respectively. The interface between SiC and Cu in the 3D-Network SiC/Cu composites prepared by different processes shows excellent bonding, and the abrasion resistance of the 3D-Network SiC/Cu composites prepared by different processes was 2.02–9.18 times that of pure copper respectively. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"80 1","pages":"1227 - 1246"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2201742","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT 3D-Network SiC ceramic was prepared using a polymer sponge replica technique with SiC ceramic slurry (77 wt% solid content). The triangular hole defects in 3D-Network SiC ceramic were reduced and the mechanical properties were improved by high-pressure spraying and vacuum infiltration. The 3D-Network SiC/Cu composite material was fabricated by the gravity casting technique, and the interfacial bonding and abrasion resistance of the composites were tested and analyzed. The results show that the compressive strength of high-pressure sprayed 3D-Network SiC ceramic increased slightly from 0.67 Mpa to 0.74 Mpa due to the triangular hole defects left when the polymer sponge was decomposed at high temperatures. The mechanical properties of 3D-Network SiC ceramics that have been vacuum infiltrated in alumina and a mixture composed of alumina and andalusite were greatly improved, and their compressive strength was increased to 1.02Mpa and 1.57Mpa, respectively. The interface between SiC and Cu in the 3D-Network SiC/Cu composites prepared by different processes shows excellent bonding, and the abrasion resistance of the 3D-Network SiC/Cu composites prepared by different processes was 2.02–9.18 times that of pure copper respectively. GRAPHICAL ABSTRACT
三维网络SiC/Cu复合材料的制备及性能研究
摘要:采用聚合物海绵复模技术,采用固含量为77%的SiC陶瓷浆料制备了三维网络SiC陶瓷。采用高压喷涂和真空浸渗的方法,减少了3D-Network SiC陶瓷的三角孔缺陷,提高了陶瓷的力学性能。采用重力铸造技术制备了三维网络SiC/Cu复合材料,并对复合材料的界面结合性能和耐磨性进行了测试和分析。结果表明:高压喷涂3D-Network SiC陶瓷的抗压强度由0.67 Mpa略微提高到0.74 Mpa,这是由于聚合物海绵在高温下分解时留下的三角孔缺陷;在氧化铝和氧化铝与红柱石的混合物中真空浸渍后,3D-Network SiC陶瓷的力学性能得到了很大的改善,抗压强度分别提高到1.02Mpa和1.57Mpa。不同工艺制备的3D-Network SiC/Cu复合材料中,SiC与Cu的界面结合良好,其耐磨性分别是纯铜的2.02 ~ 9.18倍。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信