Yasitha Warahena Liyanage, Daphney-Stavroula Zois, C. Chelmis
{"title":"On–The–Fly Feature Selection and Classification with Application to Civic Engagement Platforms","authors":"Yasitha Warahena Liyanage, Daphney-Stavroula Zois, C. Chelmis","doi":"10.1109/ICASSP40776.2020.9053564","DOIUrl":null,"url":null,"abstract":"Online feature selection and classification is crucial for time sensitive decision making. Existing work however either assumes that features are independent or produces a fixed number of features for classification. Instead, we propose an optimal framework to perform joint feature selection and classification on–the–fly while relaxing the assumption on feature independence. The effectiveness of the proposed approach is showed by classifying urban issue reports on the SeeClickFix civic engagement platform. A significant reduction in the average number of features used is observed without a drop in the classification accuracy.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"88 1","pages":"3762-3766"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Online feature selection and classification is crucial for time sensitive decision making. Existing work however either assumes that features are independent or produces a fixed number of features for classification. Instead, we propose an optimal framework to perform joint feature selection and classification on–the–fly while relaxing the assumption on feature independence. The effectiveness of the proposed approach is showed by classifying urban issue reports on the SeeClickFix civic engagement platform. A significant reduction in the average number of features used is observed without a drop in the classification accuracy.