On–The–Fly Feature Selection and Classification with Application to Civic Engagement Platforms

Yasitha Warahena Liyanage, Daphney-Stavroula Zois, C. Chelmis
{"title":"On–The–Fly Feature Selection and Classification with Application to Civic Engagement Platforms","authors":"Yasitha Warahena Liyanage, Daphney-Stavroula Zois, C. Chelmis","doi":"10.1109/ICASSP40776.2020.9053564","DOIUrl":null,"url":null,"abstract":"Online feature selection and classification is crucial for time sensitive decision making. Existing work however either assumes that features are independent or produces a fixed number of features for classification. Instead, we propose an optimal framework to perform joint feature selection and classification on–the–fly while relaxing the assumption on feature independence. The effectiveness of the proposed approach is showed by classifying urban issue reports on the SeeClickFix civic engagement platform. A significant reduction in the average number of features used is observed without a drop in the classification accuracy.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"88 1","pages":"3762-3766"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Online feature selection and classification is crucial for time sensitive decision making. Existing work however either assumes that features are independent or produces a fixed number of features for classification. Instead, we propose an optimal framework to perform joint feature selection and classification on–the–fly while relaxing the assumption on feature independence. The effectiveness of the proposed approach is showed by classifying urban issue reports on the SeeClickFix civic engagement platform. A significant reduction in the average number of features used is observed without a drop in the classification accuracy.
动态特征选择与分类及其在公民参与平台上的应用
在线特征选择和分类是时间敏感决策的关键。然而,现有的工作要么假设特征是独立的,要么产生固定数量的特征用于分类。相反,我们提出了一个优化框架,在放松特征独立性假设的同时,实时执行联合特征选择和分类。通过在SeeClickFix公民参与平台上对城市问题报告进行分类,表明了所提出方法的有效性。在没有降低分类精度的情况下,观察到使用的平均特征数量显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信