{"title":"Low Frequency Electrical Resonance in Water","authors":"Xindong Wang, Qiang Fu","doi":"10.31219/osf.io/myh24","DOIUrl":null,"url":null,"abstract":"We report the observation of sharp electrical resonance of water with width ~2 neV in the low radiofrequency range at room temperature. Various controlling factors, including temperature, pH level, biasvoltage, and boundary conditions are found to impact on the resonance frequency and intensity. The neVlevel of the resonant width is not expected under room temperature (~25 meV), within any existingmolecular theory of the dielectric properties of water, strongly suggesting that a macroscopic long-rangecoherent quantum mechanical excited state is responsible for the resonance.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/myh24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report the observation of sharp electrical resonance of water with width ~2 neV in the low radiofrequency range at room temperature. Various controlling factors, including temperature, pH level, biasvoltage, and boundary conditions are found to impact on the resonance frequency and intensity. The neVlevel of the resonant width is not expected under room temperature (~25 meV), within any existingmolecular theory of the dielectric properties of water, strongly suggesting that a macroscopic long-rangecoherent quantum mechanical excited state is responsible for the resonance.