The topic-perspective model for social tagging systems

Caimei Lu, Xiaohua Hu, Xin Chen, Jung-ran Park, Tingting He, Zhoujun Li
{"title":"The topic-perspective model for social tagging systems","authors":"Caimei Lu, Xiaohua Hu, Xin Chen, Jung-ran Park, Tingting He, Zhoujun Li","doi":"10.1145/1835804.1835891","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new probabilistic generative model, called Topic-Perspective Model, for simulating the generation process of social annotations. Different from other generative models, in our model, the tag generation process is separated from the content term generation process. While content terms are only generated from resource topics, social tags are generated by resource topics and user perspectives together. The proposed probabilistic model can produce more useful information than any other models proposed before. The parameters learned from this model include: (1) the topical distribution of each document, (2) the perspective distribution of each user, (3) the word distribution of each topic, (4) the tag distribution of each topic, (5) the tag distribution of each user perspective, (6) and the probabilistic of each tag being generated from resource topics or user perspectives. Experimental results show that the proposed model has better generalization performance or tag prediction ability than other two models proposed in previous research.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"153 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this paper, we propose a new probabilistic generative model, called Topic-Perspective Model, for simulating the generation process of social annotations. Different from other generative models, in our model, the tag generation process is separated from the content term generation process. While content terms are only generated from resource topics, social tags are generated by resource topics and user perspectives together. The proposed probabilistic model can produce more useful information than any other models proposed before. The parameters learned from this model include: (1) the topical distribution of each document, (2) the perspective distribution of each user, (3) the word distribution of each topic, (4) the tag distribution of each topic, (5) the tag distribution of each user perspective, (6) and the probabilistic of each tag being generated from resource topics or user perspectives. Experimental results show that the proposed model has better generalization performance or tag prediction ability than other two models proposed in previous research.
社会标签系统的主题视角模型
本文提出了一种新的概率生成模型——主题视角模型,用于模拟社交注释的生成过程。与其他生成模型不同的是,在我们的模型中,标签生成过程与内容术语生成过程是分离的。虽然内容术语仅从资源主题生成,但社会标签是由资源主题和用户透视图一起生成的。所提出的概率模型比以前提出的任何其他模型都能产生更多有用的信息。从该模型中学习到的参数包括:(1)每个文档的主题分布,(2)每个用户的视角分布,(3)每个主题的词分布,(4)每个主题的标签分布,(5)每个用户视角的标签分布,(6)从资源主题或用户视角生成每个标签的概率。实验结果表明,该模型具有较好的泛化性能或标签预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信