Deep Reinforcement Learning-based Rate Adaptation for Adaptive 360-Degree Video Streaming

Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu, H. Xiong
{"title":"Deep Reinforcement Learning-based Rate Adaptation for Adaptive 360-Degree Video Streaming","authors":"Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu, H. Xiong","doi":"10.1109/ICASSP.2019.8683779","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep reinforcement learning (DRL)-based rate adaptation algorithm for adaptive 360-degree video streaming, which is able to maximize the quality of experience of viewers by adapting the transmitted video quality to the time-varying network conditions. Specifically, to reduce the possible switching latency of the field of view (FoV), we design a new QoE metric by introducing a penalty term for the large buffer occupancy. A scalable FoV method is further proposed to alleviate the combinatorial explosion of the action space in the DRL formulation. Then, we model the rate adaptation logic as a Markov decision process and employ the DRL-based algorithm to dynamically learn the optimal video transmission rate. Simulation results show the superior performance of the proposed algorithm compared to the existing algorithms.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"75 1","pages":"4030-4034"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper, we propose a deep reinforcement learning (DRL)-based rate adaptation algorithm for adaptive 360-degree video streaming, which is able to maximize the quality of experience of viewers by adapting the transmitted video quality to the time-varying network conditions. Specifically, to reduce the possible switching latency of the field of view (FoV), we design a new QoE metric by introducing a penalty term for the large buffer occupancy. A scalable FoV method is further proposed to alleviate the combinatorial explosion of the action space in the DRL formulation. Then, we model the rate adaptation logic as a Markov decision process and employ the DRL-based algorithm to dynamically learn the optimal video transmission rate. Simulation results show the superior performance of the proposed algorithm compared to the existing algorithms.
基于深度强化学习的自适应360度视频流速率自适应
在本文中,我们提出了一种基于深度强化学习(DRL)的自适应360度视频流的速率自适应算法,该算法通过使传输的视频质量适应时变的网络条件,从而最大限度地提高观众的体验质量。具体来说,为了减少视场切换的延迟,我们设计了一个新的QoE指标,引入了对大缓冲区占用的惩罚项。进一步提出了一种可扩展的视场方法,以缓解DRL公式中动作空间的组合爆炸。然后,我们将速率自适应逻辑建模为马尔可夫决策过程,并采用基于drl的算法动态学习最优视频传输速率。仿真结果表明,该算法的性能优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信